Lessons to learn from a mistaken optimization
• FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm rel...
Ausführliche Beschreibung
Autor*in: |
Szilágyi, László [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
Grouped coordinate minimization |
---|
Umfang: |
7 |
---|
Übergeordnetes Werk: |
Enthalten in: Thermal structure optimization of a supercondcuting cavity vertical test cryostat - Jin, Shufeng ELSEVIER, 2019, an official publ. of the International Association for Pattern Recognition, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:2014 ; day:15 ; month:01 ; pages:29-35 ; extent:7 |
Links: |
---|
DOI / URN: |
10.1016/j.patrec.2013.08.027 |
---|
Katalog-ID: |
ELV022436103 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV022436103 | ||
003 | DE-627 | ||
005 | 20230623163922.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.patrec.2013.08.027 |2 doi | |
028 | 5 | 2 | |a GBVA2014004000016.pica |
035 | |a (DE-627)ELV022436103 | ||
035 | |a (ELSEVIER)S0167-8655(13)00331-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 33.09 |2 bkl | ||
100 | 1 | |a Szilágyi, László |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lessons to learn from a mistaken optimization |
264 | 1 | |c 2014 | |
300 | |a 7 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm related to suppressed FCM. • Solutions are proposed to improve FLICM’s accuracy in image segmentation. | ||
650 | 7 | |a Image segmentation |2 Elsevier | |
650 | 7 | |a Grouped coordinate minimization |2 Elsevier | |
650 | 7 | |a Fuzzy c-means clustering |2 Elsevier | |
650 | 7 | |a Fuzzy local information c-means clustering |2 Elsevier | |
650 | 7 | |a Suppressed fuzzy c-means clustering |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Jin, Shufeng ELSEVIER |t Thermal structure optimization of a supercondcuting cavity vertical test cryostat |d 2019 |d an official publ. of the International Association for Pattern Recognition |g Amsterdam [u.a.] |w (DE-627)ELV003173968 |
773 | 1 | 8 | |g volume:36 |g year:2014 |g day:15 |g month:01 |g pages:29-35 |g extent:7 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.patrec.2013.08.027 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 33.09 |j Physik unter besonderen Bedingungen |q VZ |
951 | |a AR | ||
952 | |d 36 |j 2014 |b 15 |c 0115 |h 29-35 |g 7 | ||
953 | |2 045F |a 004 |
author_variant |
l s ls |
---|---|
matchkey_str |
szilgyilszl:2014----:esntlanrmmsae |
hierarchy_sort_str |
2014 |
bklnumber |
52.43 33.09 |
publishDate |
2014 |
allfields |
10.1016/j.patrec.2013.08.027 doi GBVA2014004000016.pica (DE-627)ELV022436103 (ELSEVIER)S0167-8655(13)00331-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Szilágyi, László verfasserin aut Lessons to learn from a mistaken optimization 2014 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm related to suppressed FCM. • Solutions are proposed to improve FLICM’s accuracy in image segmentation. Image segmentation Elsevier Grouped coordinate minimization Elsevier Fuzzy c-means clustering Elsevier Fuzzy local information c-means clustering Elsevier Suppressed fuzzy c-means clustering Elsevier Enthalten in Elsevier Jin, Shufeng ELSEVIER Thermal structure optimization of a supercondcuting cavity vertical test cryostat 2019 an official publ. of the International Association for Pattern Recognition Amsterdam [u.a.] (DE-627)ELV003173968 volume:36 year:2014 day:15 month:01 pages:29-35 extent:7 https://doi.org/10.1016/j.patrec.2013.08.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 52.43 Kältetechnik VZ 33.09 Physik unter besonderen Bedingungen VZ AR 36 2014 15 0115 29-35 7 045F 004 |
spelling |
10.1016/j.patrec.2013.08.027 doi GBVA2014004000016.pica (DE-627)ELV022436103 (ELSEVIER)S0167-8655(13)00331-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Szilágyi, László verfasserin aut Lessons to learn from a mistaken optimization 2014 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm related to suppressed FCM. • Solutions are proposed to improve FLICM’s accuracy in image segmentation. Image segmentation Elsevier Grouped coordinate minimization Elsevier Fuzzy c-means clustering Elsevier Fuzzy local information c-means clustering Elsevier Suppressed fuzzy c-means clustering Elsevier Enthalten in Elsevier Jin, Shufeng ELSEVIER Thermal structure optimization of a supercondcuting cavity vertical test cryostat 2019 an official publ. of the International Association for Pattern Recognition Amsterdam [u.a.] (DE-627)ELV003173968 volume:36 year:2014 day:15 month:01 pages:29-35 extent:7 https://doi.org/10.1016/j.patrec.2013.08.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 52.43 Kältetechnik VZ 33.09 Physik unter besonderen Bedingungen VZ AR 36 2014 15 0115 29-35 7 045F 004 |
allfields_unstemmed |
10.1016/j.patrec.2013.08.027 doi GBVA2014004000016.pica (DE-627)ELV022436103 (ELSEVIER)S0167-8655(13)00331-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Szilágyi, László verfasserin aut Lessons to learn from a mistaken optimization 2014 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm related to suppressed FCM. • Solutions are proposed to improve FLICM’s accuracy in image segmentation. Image segmentation Elsevier Grouped coordinate minimization Elsevier Fuzzy c-means clustering Elsevier Fuzzy local information c-means clustering Elsevier Suppressed fuzzy c-means clustering Elsevier Enthalten in Elsevier Jin, Shufeng ELSEVIER Thermal structure optimization of a supercondcuting cavity vertical test cryostat 2019 an official publ. of the International Association for Pattern Recognition Amsterdam [u.a.] (DE-627)ELV003173968 volume:36 year:2014 day:15 month:01 pages:29-35 extent:7 https://doi.org/10.1016/j.patrec.2013.08.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 52.43 Kältetechnik VZ 33.09 Physik unter besonderen Bedingungen VZ AR 36 2014 15 0115 29-35 7 045F 004 |
allfieldsGer |
10.1016/j.patrec.2013.08.027 doi GBVA2014004000016.pica (DE-627)ELV022436103 (ELSEVIER)S0167-8655(13)00331-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Szilágyi, László verfasserin aut Lessons to learn from a mistaken optimization 2014 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm related to suppressed FCM. • Solutions are proposed to improve FLICM’s accuracy in image segmentation. Image segmentation Elsevier Grouped coordinate minimization Elsevier Fuzzy c-means clustering Elsevier Fuzzy local information c-means clustering Elsevier Suppressed fuzzy c-means clustering Elsevier Enthalten in Elsevier Jin, Shufeng ELSEVIER Thermal structure optimization of a supercondcuting cavity vertical test cryostat 2019 an official publ. of the International Association for Pattern Recognition Amsterdam [u.a.] (DE-627)ELV003173968 volume:36 year:2014 day:15 month:01 pages:29-35 extent:7 https://doi.org/10.1016/j.patrec.2013.08.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 52.43 Kältetechnik VZ 33.09 Physik unter besonderen Bedingungen VZ AR 36 2014 15 0115 29-35 7 045F 004 |
allfieldsSound |
10.1016/j.patrec.2013.08.027 doi GBVA2014004000016.pica (DE-627)ELV022436103 (ELSEVIER)S0167-8655(13)00331-0 DE-627 ger DE-627 rakwb eng 004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Szilágyi, László verfasserin aut Lessons to learn from a mistaken optimization 2014 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm related to suppressed FCM. • Solutions are proposed to improve FLICM’s accuracy in image segmentation. Image segmentation Elsevier Grouped coordinate minimization Elsevier Fuzzy c-means clustering Elsevier Fuzzy local information c-means clustering Elsevier Suppressed fuzzy c-means clustering Elsevier Enthalten in Elsevier Jin, Shufeng ELSEVIER Thermal structure optimization of a supercondcuting cavity vertical test cryostat 2019 an official publ. of the International Association for Pattern Recognition Amsterdam [u.a.] (DE-627)ELV003173968 volume:36 year:2014 day:15 month:01 pages:29-35 extent:7 https://doi.org/10.1016/j.patrec.2013.08.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 52.43 Kältetechnik VZ 33.09 Physik unter besonderen Bedingungen VZ AR 36 2014 15 0115 29-35 7 045F 004 |
language |
English |
source |
Enthalten in Thermal structure optimization of a supercondcuting cavity vertical test cryostat Amsterdam [u.a.] volume:36 year:2014 day:15 month:01 pages:29-35 extent:7 |
sourceStr |
Enthalten in Thermal structure optimization of a supercondcuting cavity vertical test cryostat Amsterdam [u.a.] volume:36 year:2014 day:15 month:01 pages:29-35 extent:7 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Physik unter besonderen Bedingungen |
institution |
findex.gbv.de |
topic_facet |
Image segmentation Grouped coordinate minimization Fuzzy c-means clustering Fuzzy local information c-means clustering Suppressed fuzzy c-means clustering |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Thermal structure optimization of a supercondcuting cavity vertical test cryostat |
authorswithroles_txt_mv |
Szilágyi, László @@aut@@ |
publishDateDaySort_date |
2014-01-15T00:00:00Z |
hierarchy_top_id |
ELV003173968 |
dewey-sort |
14 |
id |
ELV022436103 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV022436103</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623163922.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.patrec.2013.08.027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014004000016.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV022436103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-8655(13)00331-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Szilágyi, László</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lessons to learn from a mistaken optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm related to suppressed FCM. • Solutions are proposed to improve FLICM’s accuracy in image segmentation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Image segmentation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grouped coordinate minimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy c-means clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy local information c-means clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Suppressed fuzzy c-means clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jin, Shufeng ELSEVIER</subfield><subfield code="t">Thermal structure optimization of a supercondcuting cavity vertical test cryostat</subfield><subfield code="d">2019</subfield><subfield code="d">an official publ. of the International Association for Pattern Recognition</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003173968</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:29-35</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.patrec.2013.08.027</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2014</subfield><subfield code="b">15</subfield><subfield code="c">0115</subfield><subfield code="h">29-35</subfield><subfield code="g">7</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Szilágyi, László |
spellingShingle |
Szilágyi, László ddc 004 ddc 660 bkl 52.43 bkl 33.09 Elsevier Image segmentation Elsevier Grouped coordinate minimization Elsevier Fuzzy c-means clustering Elsevier Fuzzy local information c-means clustering Elsevier Suppressed fuzzy c-means clustering Lessons to learn from a mistaken optimization |
authorStr |
Szilágyi, László |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003173968 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Lessons to learn from a mistaken optimization Image segmentation Elsevier Grouped coordinate minimization Elsevier Fuzzy c-means clustering Elsevier Fuzzy local information c-means clustering Elsevier Suppressed fuzzy c-means clustering Elsevier |
topic |
ddc 004 ddc 660 bkl 52.43 bkl 33.09 Elsevier Image segmentation Elsevier Grouped coordinate minimization Elsevier Fuzzy c-means clustering Elsevier Fuzzy local information c-means clustering Elsevier Suppressed fuzzy c-means clustering |
topic_unstemmed |
ddc 004 ddc 660 bkl 52.43 bkl 33.09 Elsevier Image segmentation Elsevier Grouped coordinate minimization Elsevier Fuzzy c-means clustering Elsevier Fuzzy local information c-means clustering Elsevier Suppressed fuzzy c-means clustering |
topic_browse |
ddc 004 ddc 660 bkl 52.43 bkl 33.09 Elsevier Image segmentation Elsevier Grouped coordinate minimization Elsevier Fuzzy c-means clustering Elsevier Fuzzy local information c-means clustering Elsevier Suppressed fuzzy c-means clustering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Thermal structure optimization of a supercondcuting cavity vertical test cryostat |
hierarchy_parent_id |
ELV003173968 |
dewey-tens |
000 - Computer science, knowledge & systems 660 - Chemical engineering |
hierarchy_top_title |
Thermal structure optimization of a supercondcuting cavity vertical test cryostat |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003173968 |
title |
Lessons to learn from a mistaken optimization |
ctrlnum |
(DE-627)ELV022436103 (ELSEVIER)S0167-8655(13)00331-0 |
title_full |
Lessons to learn from a mistaken optimization |
author_sort |
Szilágyi, László |
journal |
Thermal structure optimization of a supercondcuting cavity vertical test cryostat |
journalStr |
Thermal structure optimization of a supercondcuting cavity vertical test cryostat |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
29 |
author_browse |
Szilágyi, László |
container_volume |
36 |
physical |
7 |
class |
004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Szilágyi, László |
doi_str_mv |
10.1016/j.patrec.2013.08.027 |
dewey-full |
004 660 |
title_sort |
lessons to learn from a mistaken optimization |
title_auth |
Lessons to learn from a mistaken optimization |
abstract |
• FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm related to suppressed FCM. • Solutions are proposed to improve FLICM’s accuracy in image segmentation. |
abstractGer |
• FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm related to suppressed FCM. • Solutions are proposed to improve FLICM’s accuracy in image segmentation. |
abstract_unstemmed |
• FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm related to suppressed FCM. • Solutions are proposed to improve FLICM’s accuracy in image segmentation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Lessons to learn from a mistaken optimization |
url |
https://doi.org/10.1016/j.patrec.2013.08.027 |
remote_bool |
true |
ppnlink |
ELV003173968 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.patrec.2013.08.027 |
up_date |
2024-07-06T21:59:24.352Z |
_version_ |
1803868610865659904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV022436103</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623163922.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.patrec.2013.08.027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014004000016.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV022436103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-8655(13)00331-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Szilágyi, László</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lessons to learn from a mistaken optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• FLICM was proposed as robust image segmentation algorithm derived from fuzzy c-means. • A deep insight is given, into the theoretical foundation of FLICM algorithm. • Several critical issues of FLICM’s objective function are revealed. • FLICM is identified as a non-optimal clustering algorithm related to suppressed FCM. • Solutions are proposed to improve FLICM’s accuracy in image segmentation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Image segmentation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grouped coordinate minimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy c-means clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy local information c-means clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Suppressed fuzzy c-means clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jin, Shufeng ELSEVIER</subfield><subfield code="t">Thermal structure optimization of a supercondcuting cavity vertical test cryostat</subfield><subfield code="d">2019</subfield><subfield code="d">an official publ. of the International Association for Pattern Recognition</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003173968</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:29-35</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.patrec.2013.08.027</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2014</subfield><subfield code="b">15</subfield><subfield code="c">0115</subfield><subfield code="h">29-35</subfield><subfield code="g">7</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.4006615 |