Riemannian mathematical morphology
This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosio...
Ausführliche Beschreibung
Autor*in: |
Angulo, Jesús [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
Morphological processing of surfaces |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Thermal structure optimization of a supercondcuting cavity vertical test cryostat - Jin, Shufeng ELSEVIER, 2019, an official publ. of the International Association for Pattern Recognition, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2014 ; day:1 ; month:10 ; pages:93-101 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.patrec.2014.05.015 |
---|
Katalog-ID: |
ELV02243724X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV02243724X | ||
003 | DE-627 | ||
005 | 20230625135455.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.patrec.2014.05.015 |2 doi | |
028 | 5 | 2 | |a GBVA2014004000016.pica |
035 | |a (DE-627)ELV02243724X | ||
035 | |a (ELSEVIER)S0167-8655(14)00171-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 33.09 |2 bkl | ||
100 | 1 | |a Angulo, Jesús |e verfasserin |4 aut | |
245 | 1 | 0 | |a Riemannian mathematical morphology |
264 | 1 | |c 2014transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. | ||
520 | |a This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. | ||
650 | 7 | |a Morphological processing of surfaces |2 Elsevier | |
650 | 7 | |a Riemannian images |2 Elsevier | |
650 | 7 | |a Riemannian structuring function |2 Elsevier | |
650 | 7 | |a Riemannian image embedding |2 Elsevier | |
650 | 7 | |a Mathematical morphology |2 Elsevier | |
650 | 7 | |a Nonlinear manifold image processing |2 Elsevier | |
700 | 1 | |a Velasco-Forero, Santiago |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Jin, Shufeng ELSEVIER |t Thermal structure optimization of a supercondcuting cavity vertical test cryostat |d 2019 |d an official publ. of the International Association for Pattern Recognition |g Amsterdam [u.a.] |w (DE-627)ELV003173968 |
773 | 1 | 8 | |g volume:47 |g year:2014 |g day:1 |g month:10 |g pages:93-101 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.patrec.2014.05.015 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 33.09 |j Physik unter besonderen Bedingungen |q VZ |
951 | |a AR | ||
952 | |d 47 |j 2014 |b 1 |c 1001 |h 93-101 |g 9 | ||
953 | |2 045F |a 004 |
author_variant |
j a ja |
---|---|
matchkey_str |
angulojessvelascoforerosantiago:2014----:imninahmtclo |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
52.43 33.09 |
publishDate |
2014 |
allfields |
10.1016/j.patrec.2014.05.015 doi GBVA2014004000016.pica (DE-627)ELV02243724X (ELSEVIER)S0167-8655(14)00171-8 DE-627 ger DE-627 rakwb eng 004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Angulo, Jesús verfasserin aut Riemannian mathematical morphology 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. Morphological processing of surfaces Elsevier Riemannian images Elsevier Riemannian structuring function Elsevier Riemannian image embedding Elsevier Mathematical morphology Elsevier Nonlinear manifold image processing Elsevier Velasco-Forero, Santiago oth Enthalten in Elsevier Jin, Shufeng ELSEVIER Thermal structure optimization of a supercondcuting cavity vertical test cryostat 2019 an official publ. of the International Association for Pattern Recognition Amsterdam [u.a.] (DE-627)ELV003173968 volume:47 year:2014 day:1 month:10 pages:93-101 extent:9 https://doi.org/10.1016/j.patrec.2014.05.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 52.43 Kältetechnik VZ 33.09 Physik unter besonderen Bedingungen VZ AR 47 2014 1 1001 93-101 9 045F 004 |
spelling |
10.1016/j.patrec.2014.05.015 doi GBVA2014004000016.pica (DE-627)ELV02243724X (ELSEVIER)S0167-8655(14)00171-8 DE-627 ger DE-627 rakwb eng 004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Angulo, Jesús verfasserin aut Riemannian mathematical morphology 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. Morphological processing of surfaces Elsevier Riemannian images Elsevier Riemannian structuring function Elsevier Riemannian image embedding Elsevier Mathematical morphology Elsevier Nonlinear manifold image processing Elsevier Velasco-Forero, Santiago oth Enthalten in Elsevier Jin, Shufeng ELSEVIER Thermal structure optimization of a supercondcuting cavity vertical test cryostat 2019 an official publ. of the International Association for Pattern Recognition Amsterdam [u.a.] (DE-627)ELV003173968 volume:47 year:2014 day:1 month:10 pages:93-101 extent:9 https://doi.org/10.1016/j.patrec.2014.05.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 52.43 Kältetechnik VZ 33.09 Physik unter besonderen Bedingungen VZ AR 47 2014 1 1001 93-101 9 045F 004 |
allfields_unstemmed |
10.1016/j.patrec.2014.05.015 doi GBVA2014004000016.pica (DE-627)ELV02243724X (ELSEVIER)S0167-8655(14)00171-8 DE-627 ger DE-627 rakwb eng 004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Angulo, Jesús verfasserin aut Riemannian mathematical morphology 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. Morphological processing of surfaces Elsevier Riemannian images Elsevier Riemannian structuring function Elsevier Riemannian image embedding Elsevier Mathematical morphology Elsevier Nonlinear manifold image processing Elsevier Velasco-Forero, Santiago oth Enthalten in Elsevier Jin, Shufeng ELSEVIER Thermal structure optimization of a supercondcuting cavity vertical test cryostat 2019 an official publ. of the International Association for Pattern Recognition Amsterdam [u.a.] (DE-627)ELV003173968 volume:47 year:2014 day:1 month:10 pages:93-101 extent:9 https://doi.org/10.1016/j.patrec.2014.05.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 52.43 Kältetechnik VZ 33.09 Physik unter besonderen Bedingungen VZ AR 47 2014 1 1001 93-101 9 045F 004 |
allfieldsGer |
10.1016/j.patrec.2014.05.015 doi GBVA2014004000016.pica (DE-627)ELV02243724X (ELSEVIER)S0167-8655(14)00171-8 DE-627 ger DE-627 rakwb eng 004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Angulo, Jesús verfasserin aut Riemannian mathematical morphology 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. Morphological processing of surfaces Elsevier Riemannian images Elsevier Riemannian structuring function Elsevier Riemannian image embedding Elsevier Mathematical morphology Elsevier Nonlinear manifold image processing Elsevier Velasco-Forero, Santiago oth Enthalten in Elsevier Jin, Shufeng ELSEVIER Thermal structure optimization of a supercondcuting cavity vertical test cryostat 2019 an official publ. of the International Association for Pattern Recognition Amsterdam [u.a.] (DE-627)ELV003173968 volume:47 year:2014 day:1 month:10 pages:93-101 extent:9 https://doi.org/10.1016/j.patrec.2014.05.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 52.43 Kältetechnik VZ 33.09 Physik unter besonderen Bedingungen VZ AR 47 2014 1 1001 93-101 9 045F 004 |
allfieldsSound |
10.1016/j.patrec.2014.05.015 doi GBVA2014004000016.pica (DE-627)ELV02243724X (ELSEVIER)S0167-8655(14)00171-8 DE-627 ger DE-627 rakwb eng 004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Angulo, Jesús verfasserin aut Riemannian mathematical morphology 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. Morphological processing of surfaces Elsevier Riemannian images Elsevier Riemannian structuring function Elsevier Riemannian image embedding Elsevier Mathematical morphology Elsevier Nonlinear manifold image processing Elsevier Velasco-Forero, Santiago oth Enthalten in Elsevier Jin, Shufeng ELSEVIER Thermal structure optimization of a supercondcuting cavity vertical test cryostat 2019 an official publ. of the International Association for Pattern Recognition Amsterdam [u.a.] (DE-627)ELV003173968 volume:47 year:2014 day:1 month:10 pages:93-101 extent:9 https://doi.org/10.1016/j.patrec.2014.05.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 52.43 Kältetechnik VZ 33.09 Physik unter besonderen Bedingungen VZ AR 47 2014 1 1001 93-101 9 045F 004 |
language |
English |
source |
Enthalten in Thermal structure optimization of a supercondcuting cavity vertical test cryostat Amsterdam [u.a.] volume:47 year:2014 day:1 month:10 pages:93-101 extent:9 |
sourceStr |
Enthalten in Thermal structure optimization of a supercondcuting cavity vertical test cryostat Amsterdam [u.a.] volume:47 year:2014 day:1 month:10 pages:93-101 extent:9 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Physik unter besonderen Bedingungen |
institution |
findex.gbv.de |
topic_facet |
Morphological processing of surfaces Riemannian images Riemannian structuring function Riemannian image embedding Mathematical morphology Nonlinear manifold image processing |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Thermal structure optimization of a supercondcuting cavity vertical test cryostat |
authorswithroles_txt_mv |
Angulo, Jesús @@aut@@ Velasco-Forero, Santiago @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV003173968 |
dewey-sort |
14 |
id |
ELV02243724X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV02243724X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625135455.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.patrec.2014.05.015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014004000016.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV02243724X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-8655(14)00171-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Angulo, Jesús</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian mathematical morphology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morphological processing of surfaces</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian images</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian structuring function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian image embedding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical morphology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear manifold image processing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Velasco-Forero, Santiago</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jin, Shufeng ELSEVIER</subfield><subfield code="t">Thermal structure optimization of a supercondcuting cavity vertical test cryostat</subfield><subfield code="d">2019</subfield><subfield code="d">an official publ. of the International Association for Pattern Recognition</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003173968</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:93-101</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.patrec.2014.05.015</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2014</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">93-101</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Angulo, Jesús |
spellingShingle |
Angulo, Jesús ddc 004 ddc 660 bkl 52.43 bkl 33.09 Elsevier Morphological processing of surfaces Elsevier Riemannian images Elsevier Riemannian structuring function Elsevier Riemannian image embedding Elsevier Mathematical morphology Elsevier Nonlinear manifold image processing Riemannian mathematical morphology |
authorStr |
Angulo, Jesús |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003173968 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl Riemannian mathematical morphology Morphological processing of surfaces Elsevier Riemannian images Elsevier Riemannian structuring function Elsevier Riemannian image embedding Elsevier Mathematical morphology Elsevier Nonlinear manifold image processing Elsevier |
topic |
ddc 004 ddc 660 bkl 52.43 bkl 33.09 Elsevier Morphological processing of surfaces Elsevier Riemannian images Elsevier Riemannian structuring function Elsevier Riemannian image embedding Elsevier Mathematical morphology Elsevier Nonlinear manifold image processing |
topic_unstemmed |
ddc 004 ddc 660 bkl 52.43 bkl 33.09 Elsevier Morphological processing of surfaces Elsevier Riemannian images Elsevier Riemannian structuring function Elsevier Riemannian image embedding Elsevier Mathematical morphology Elsevier Nonlinear manifold image processing |
topic_browse |
ddc 004 ddc 660 bkl 52.43 bkl 33.09 Elsevier Morphological processing of surfaces Elsevier Riemannian images Elsevier Riemannian structuring function Elsevier Riemannian image embedding Elsevier Mathematical morphology Elsevier Nonlinear manifold image processing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s v f svf |
hierarchy_parent_title |
Thermal structure optimization of a supercondcuting cavity vertical test cryostat |
hierarchy_parent_id |
ELV003173968 |
dewey-tens |
000 - Computer science, knowledge & systems 660 - Chemical engineering |
hierarchy_top_title |
Thermal structure optimization of a supercondcuting cavity vertical test cryostat |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003173968 |
title |
Riemannian mathematical morphology |
ctrlnum |
(DE-627)ELV02243724X (ELSEVIER)S0167-8655(14)00171-8 |
title_full |
Riemannian mathematical morphology |
author_sort |
Angulo, Jesús |
journal |
Thermal structure optimization of a supercondcuting cavity vertical test cryostat |
journalStr |
Thermal structure optimization of a supercondcuting cavity vertical test cryostat |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
93 |
author_browse |
Angulo, Jesús |
container_volume |
47 |
physical |
9 |
class |
004 004 DE-600 660 VZ 52.43 bkl 33.09 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Angulo, Jesús |
doi_str_mv |
10.1016/j.patrec.2014.05.015 |
dewey-full |
004 660 |
title_sort |
riemannian mathematical morphology |
title_auth |
Riemannian mathematical morphology |
abstract |
This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. |
abstractGer |
This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. |
abstract_unstemmed |
This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Riemannian mathematical morphology |
url |
https://doi.org/10.1016/j.patrec.2014.05.015 |
remote_bool |
true |
author2 |
Velasco-Forero, Santiago |
author2Str |
Velasco-Forero, Santiago |
ppnlink |
ELV003173968 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.patrec.2014.05.015 |
up_date |
2024-07-06T21:59:32.211Z |
_version_ |
1803868619105370112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV02243724X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625135455.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.patrec.2014.05.015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014004000016.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV02243724X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-8655(14)00171-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Angulo, Jesús</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian mathematical morphology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonical quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonical case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry–Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morphological processing of surfaces</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian images</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian structuring function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian image embedding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical morphology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear manifold image processing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Velasco-Forero, Santiago</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jin, Shufeng ELSEVIER</subfield><subfield code="t">Thermal structure optimization of a supercondcuting cavity vertical test cryostat</subfield><subfield code="d">2019</subfield><subfield code="d">an official publ. of the International Association for Pattern Recognition</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003173968</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:93-101</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.patrec.2014.05.015</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2014</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">93-101</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.3998556 |