Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application
Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance abilit...
Ausführliche Beschreibung
Autor*in: |
Xi, Min [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Numerical analysis of wind turbines blade in deep dynamic stall - Karbasian, Hamid Reza ELSEVIER, 2022, Orlando, Fla |
---|---|
Übergeordnetes Werk: |
volume:219 ; year:2014 ; pages:118-126 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.jssc.2014.07.022 |
---|
Katalog-ID: |
ELV023071524 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV023071524 | ||
003 | DE-627 | ||
005 | 20230625140646.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jssc.2014.07.022 |2 doi | |
028 | 5 | 2 | |a GBVA2014020000028.pica |
035 | |a (DE-627)ELV023071524 | ||
035 | |a (ELSEVIER)S0022-4596(14)00327-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 540 | |
082 | 0 | 4 | |a 540 |q DE-600 |
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Xi, Min |e verfasserin |4 aut | |
245 | 1 | 0 | |a Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application |
264 | 1 | |c 2014transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. | ||
520 | |a Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. | ||
650 | 7 | |a Pretreatment |2 Elsevier | |
650 | 7 | |a Hollow TiO2 nanorod |2 Elsevier | |
650 | 7 | |a Ti foil |2 Elsevier | |
650 | 7 | |a Hydrothermal |2 Elsevier | |
650 | 7 | |a DSSC |2 Elsevier | |
700 | 1 | |a Zhang, Yulan |4 oth | |
700 | 1 | |a Long, Lizhen |4 oth | |
700 | 1 | |a Li, Xinjun |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Academic Press |a Karbasian, Hamid Reza ELSEVIER |t Numerical analysis of wind turbines blade in deep dynamic stall |d 2022 |g Orlando, Fla |w (DE-627)ELV008417474 |
773 | 1 | 8 | |g volume:219 |g year:2014 |g pages:118-126 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jssc.2014.07.022 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 219 |j 2014 |h 118-126 |g 9 | ||
953 | |2 045F |a 540 |
author_variant |
m x mx |
---|---|
matchkey_str |
ximinzhangyulanlonglizhenlixinjun:2014----:otolbeyrtemlyteiortltohlonnrdrasnilpera |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
52.56 |
publishDate |
2014 |
allfields |
10.1016/j.jssc.2014.07.022 doi GBVA2014020000028.pica (DE-627)ELV023071524 (ELSEVIER)S0022-4596(14)00327-2 DE-627 ger DE-627 rakwb eng 540 540 DE-600 530 620 VZ 52.56 bkl Xi, Min verfasserin aut Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. Pretreatment Elsevier Hollow TiO2 nanorod Elsevier Ti foil Elsevier Hydrothermal Elsevier DSSC Elsevier Zhang, Yulan oth Long, Lizhen oth Li, Xinjun oth Enthalten in Academic Press Karbasian, Hamid Reza ELSEVIER Numerical analysis of wind turbines blade in deep dynamic stall 2022 Orlando, Fla (DE-627)ELV008417474 volume:219 year:2014 pages:118-126 extent:9 https://doi.org/10.1016/j.jssc.2014.07.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 219 2014 118-126 9 045F 540 |
spelling |
10.1016/j.jssc.2014.07.022 doi GBVA2014020000028.pica (DE-627)ELV023071524 (ELSEVIER)S0022-4596(14)00327-2 DE-627 ger DE-627 rakwb eng 540 540 DE-600 530 620 VZ 52.56 bkl Xi, Min verfasserin aut Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. Pretreatment Elsevier Hollow TiO2 nanorod Elsevier Ti foil Elsevier Hydrothermal Elsevier DSSC Elsevier Zhang, Yulan oth Long, Lizhen oth Li, Xinjun oth Enthalten in Academic Press Karbasian, Hamid Reza ELSEVIER Numerical analysis of wind turbines blade in deep dynamic stall 2022 Orlando, Fla (DE-627)ELV008417474 volume:219 year:2014 pages:118-126 extent:9 https://doi.org/10.1016/j.jssc.2014.07.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 219 2014 118-126 9 045F 540 |
allfields_unstemmed |
10.1016/j.jssc.2014.07.022 doi GBVA2014020000028.pica (DE-627)ELV023071524 (ELSEVIER)S0022-4596(14)00327-2 DE-627 ger DE-627 rakwb eng 540 540 DE-600 530 620 VZ 52.56 bkl Xi, Min verfasserin aut Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. Pretreatment Elsevier Hollow TiO2 nanorod Elsevier Ti foil Elsevier Hydrothermal Elsevier DSSC Elsevier Zhang, Yulan oth Long, Lizhen oth Li, Xinjun oth Enthalten in Academic Press Karbasian, Hamid Reza ELSEVIER Numerical analysis of wind turbines blade in deep dynamic stall 2022 Orlando, Fla (DE-627)ELV008417474 volume:219 year:2014 pages:118-126 extent:9 https://doi.org/10.1016/j.jssc.2014.07.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 219 2014 118-126 9 045F 540 |
allfieldsGer |
10.1016/j.jssc.2014.07.022 doi GBVA2014020000028.pica (DE-627)ELV023071524 (ELSEVIER)S0022-4596(14)00327-2 DE-627 ger DE-627 rakwb eng 540 540 DE-600 530 620 VZ 52.56 bkl Xi, Min verfasserin aut Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. Pretreatment Elsevier Hollow TiO2 nanorod Elsevier Ti foil Elsevier Hydrothermal Elsevier DSSC Elsevier Zhang, Yulan oth Long, Lizhen oth Li, Xinjun oth Enthalten in Academic Press Karbasian, Hamid Reza ELSEVIER Numerical analysis of wind turbines blade in deep dynamic stall 2022 Orlando, Fla (DE-627)ELV008417474 volume:219 year:2014 pages:118-126 extent:9 https://doi.org/10.1016/j.jssc.2014.07.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 219 2014 118-126 9 045F 540 |
allfieldsSound |
10.1016/j.jssc.2014.07.022 doi GBVA2014020000028.pica (DE-627)ELV023071524 (ELSEVIER)S0022-4596(14)00327-2 DE-627 ger DE-627 rakwb eng 540 540 DE-600 530 620 VZ 52.56 bkl Xi, Min verfasserin aut Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. Pretreatment Elsevier Hollow TiO2 nanorod Elsevier Ti foil Elsevier Hydrothermal Elsevier DSSC Elsevier Zhang, Yulan oth Long, Lizhen oth Li, Xinjun oth Enthalten in Academic Press Karbasian, Hamid Reza ELSEVIER Numerical analysis of wind turbines blade in deep dynamic stall 2022 Orlando, Fla (DE-627)ELV008417474 volume:219 year:2014 pages:118-126 extent:9 https://doi.org/10.1016/j.jssc.2014.07.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 219 2014 118-126 9 045F 540 |
language |
English |
source |
Enthalten in Numerical analysis of wind turbines blade in deep dynamic stall Orlando, Fla volume:219 year:2014 pages:118-126 extent:9 |
sourceStr |
Enthalten in Numerical analysis of wind turbines blade in deep dynamic stall Orlando, Fla volume:219 year:2014 pages:118-126 extent:9 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Pretreatment Hollow TiO2 nanorod Ti foil Hydrothermal DSSC |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Numerical analysis of wind turbines blade in deep dynamic stall |
authorswithroles_txt_mv |
Xi, Min @@aut@@ Zhang, Yulan @@oth@@ Long, Lizhen @@oth@@ Li, Xinjun @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV008417474 |
dewey-sort |
3540 |
id |
ELV023071524 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV023071524</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625140646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jssc.2014.07.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014020000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV023071524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-4596(14)00327-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xi, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pretreatment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hollow TiO2 nanorod</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ti foil</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrothermal</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DSSC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yulan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Long, Lizhen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xinjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Karbasian, Hamid Reza ELSEVIER</subfield><subfield code="t">Numerical analysis of wind turbines blade in deep dynamic stall</subfield><subfield code="d">2022</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV008417474</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:219</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:118-126</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jssc.2014.07.022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">219</subfield><subfield code="j">2014</subfield><subfield code="h">118-126</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
author |
Xi, Min |
spellingShingle |
Xi, Min ddc 540 ddc 530 bkl 52.56 Elsevier Pretreatment Elsevier Hollow TiO2 nanorod Elsevier Ti foil Elsevier Hydrothermal Elsevier DSSC Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application |
authorStr |
Xi, Min |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008417474 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 540 DE-600 530 620 VZ 52.56 bkl Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application Pretreatment Elsevier Hollow TiO2 nanorod Elsevier Ti foil Elsevier Hydrothermal Elsevier DSSC Elsevier |
topic |
ddc 540 ddc 530 bkl 52.56 Elsevier Pretreatment Elsevier Hollow TiO2 nanorod Elsevier Ti foil Elsevier Hydrothermal Elsevier DSSC |
topic_unstemmed |
ddc 540 ddc 530 bkl 52.56 Elsevier Pretreatment Elsevier Hollow TiO2 nanorod Elsevier Ti foil Elsevier Hydrothermal Elsevier DSSC |
topic_browse |
ddc 540 ddc 530 bkl 52.56 Elsevier Pretreatment Elsevier Hollow TiO2 nanorod Elsevier Ti foil Elsevier Hydrothermal Elsevier DSSC |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y z yz l l ll x l xl |
hierarchy_parent_title |
Numerical analysis of wind turbines blade in deep dynamic stall |
hierarchy_parent_id |
ELV008417474 |
dewey-tens |
540 - Chemistry 530 - Physics 620 - Engineering |
hierarchy_top_title |
Numerical analysis of wind turbines blade in deep dynamic stall |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008417474 |
title |
Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application |
ctrlnum |
(DE-627)ELV023071524 (ELSEVIER)S0022-4596(14)00327-2 |
title_full |
Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application |
author_sort |
Xi, Min |
journal |
Numerical analysis of wind turbines blade in deep dynamic stall |
journalStr |
Numerical analysis of wind turbines blade in deep dynamic stall |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
118 |
author_browse |
Xi, Min |
container_volume |
219 |
physical |
9 |
class |
540 540 DE-600 530 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xi, Min |
doi_str_mv |
10.1016/j.jssc.2014.07.022 |
dewey-full |
540 530 620 |
title_sort |
controllable hydrothermal synthesis of rutile tio2 hollow nanorod arrays on ticl4 pretreated ti foil for dssc application |
title_auth |
Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application |
abstract |
Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. |
abstractGer |
Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. |
abstract_unstemmed |
Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application |
url |
https://doi.org/10.1016/j.jssc.2014.07.022 |
remote_bool |
true |
author2 |
Zhang, Yulan Long, Lizhen Li, Xinjun |
author2Str |
Zhang, Yulan Long, Lizhen Li, Xinjun |
ppnlink |
ELV008417474 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.jssc.2014.07.022 |
up_date |
2024-07-06T17:54:35.637Z |
_version_ |
1803853208631640064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV023071524</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625140646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jssc.2014.07.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014020000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV023071524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-4596(14)00327-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xi, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5μm and diameter of ~200nm, obtained on 0.15M TiCl4 pretreated Ti foil with 0.6mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180°C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pretreatment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hollow TiO2 nanorod</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ti foil</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrothermal</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DSSC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yulan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Long, Lizhen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xinjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Karbasian, Hamid Reza ELSEVIER</subfield><subfield code="t">Numerical analysis of wind turbines blade in deep dynamic stall</subfield><subfield code="d">2022</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV008417474</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:219</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:118-126</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jssc.2014.07.022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">219</subfield><subfield code="j">2014</subfield><subfield code="h">118-126</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
score |
7.4006042 |