Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation
Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed...
Ausführliche Beschreibung
Autor*in: |
He, Xiaoqiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection - He, Fuliang ELSEVIER, 2019, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:451 ; year:2014 ; number:1 ; pages:55-64 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.jnucmat.2014.03.035 |
---|
Katalog-ID: |
ELV023136251 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV023136251 | ||
003 | DE-627 | ||
005 | 20230625140804.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jnucmat.2014.03.035 |2 doi | |
028 | 5 | 2 | |a GBVA2014022000002.pica |
035 | |a (DE-627)ELV023136251 | ||
035 | |a (ELSEVIER)S0022-3115(14)00160-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 |a 620 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 53.00 |2 bkl | ||
084 | |a 35.06 |2 bkl | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a He, Xiaoqiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation |
264 | 1 | |c 2014transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. | ||
520 | |a Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. | ||
700 | 1 | |a Yu, Hongxing |4 oth | |
700 | 1 | |a Jiang, Guangming |4 oth | |
700 | 1 | |a Dang, Gaojian |4 oth | |
700 | 1 | |a Wu, Dan |4 oth | |
700 | 1 | |a Zhang, Yu |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a He, Fuliang ELSEVIER |t An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |d 2019 |g Amsterdam [u.a.] |w (DE-627)ELV00295916X |
773 | 1 | 8 | |g volume:451 |g year:2014 |g number:1 |g pages:55-64 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jnucmat.2014.03.035 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 53.00 |j Elektrotechnik: Allgemeines |q VZ |
936 | b | k | |a 35.06 |j Computeranwendungen |x Chemie |q VZ |
936 | b | k | |a 54.00 |j Informatik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 451 |j 2014 |e 1 |h 55-64 |g 10 | ||
953 | |2 045F |a 530 |
author_variant |
x h xh |
---|---|
matchkey_str |
hexiaoqiangyuhongxingjiangguangmingdangg:2014----:ldigxdtomdleeomnbsdnifsoeutosnaiuainfhmnciittaoapaernfr |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
53.00 35.06 54.00 |
publishDate |
2014 |
allfields |
10.1016/j.jnucmat.2014.03.035 doi GBVA2014022000002.pica (DE-627)ELV023136251 (ELSEVIER)S0022-3115(14)00160-3 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl He, Xiaoqiang verfasserin aut Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. Yu, Hongxing oth Jiang, Guangming oth Dang, Gaojian oth Wu, Dan oth Zhang, Yu oth Enthalten in Elsevier Science He, Fuliang ELSEVIER An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection 2019 Amsterdam [u.a.] (DE-627)ELV00295916X volume:451 year:2014 number:1 pages:55-64 extent:10 https://doi.org/10.1016/j.jnucmat.2014.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 451 2014 1 55-64 10 045F 530 |
spelling |
10.1016/j.jnucmat.2014.03.035 doi GBVA2014022000002.pica (DE-627)ELV023136251 (ELSEVIER)S0022-3115(14)00160-3 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl He, Xiaoqiang verfasserin aut Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. Yu, Hongxing oth Jiang, Guangming oth Dang, Gaojian oth Wu, Dan oth Zhang, Yu oth Enthalten in Elsevier Science He, Fuliang ELSEVIER An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection 2019 Amsterdam [u.a.] (DE-627)ELV00295916X volume:451 year:2014 number:1 pages:55-64 extent:10 https://doi.org/10.1016/j.jnucmat.2014.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 451 2014 1 55-64 10 045F 530 |
allfields_unstemmed |
10.1016/j.jnucmat.2014.03.035 doi GBVA2014022000002.pica (DE-627)ELV023136251 (ELSEVIER)S0022-3115(14)00160-3 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl He, Xiaoqiang verfasserin aut Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. Yu, Hongxing oth Jiang, Guangming oth Dang, Gaojian oth Wu, Dan oth Zhang, Yu oth Enthalten in Elsevier Science He, Fuliang ELSEVIER An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection 2019 Amsterdam [u.a.] (DE-627)ELV00295916X volume:451 year:2014 number:1 pages:55-64 extent:10 https://doi.org/10.1016/j.jnucmat.2014.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 451 2014 1 55-64 10 045F 530 |
allfieldsGer |
10.1016/j.jnucmat.2014.03.035 doi GBVA2014022000002.pica (DE-627)ELV023136251 (ELSEVIER)S0022-3115(14)00160-3 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl He, Xiaoqiang verfasserin aut Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. Yu, Hongxing oth Jiang, Guangming oth Dang, Gaojian oth Wu, Dan oth Zhang, Yu oth Enthalten in Elsevier Science He, Fuliang ELSEVIER An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection 2019 Amsterdam [u.a.] (DE-627)ELV00295916X volume:451 year:2014 number:1 pages:55-64 extent:10 https://doi.org/10.1016/j.jnucmat.2014.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 451 2014 1 55-64 10 045F 530 |
allfieldsSound |
10.1016/j.jnucmat.2014.03.035 doi GBVA2014022000002.pica (DE-627)ELV023136251 (ELSEVIER)S0022-3115(14)00160-3 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl He, Xiaoqiang verfasserin aut Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. Yu, Hongxing oth Jiang, Guangming oth Dang, Gaojian oth Wu, Dan oth Zhang, Yu oth Enthalten in Elsevier Science He, Fuliang ELSEVIER An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection 2019 Amsterdam [u.a.] (DE-627)ELV00295916X volume:451 year:2014 number:1 pages:55-64 extent:10 https://doi.org/10.1016/j.jnucmat.2014.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 451 2014 1 55-64 10 045F 530 |
language |
English |
source |
Enthalten in An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection Amsterdam [u.a.] volume:451 year:2014 number:1 pages:55-64 extent:10 |
sourceStr |
Enthalten in An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection Amsterdam [u.a.] volume:451 year:2014 number:1 pages:55-64 extent:10 |
format_phy_str_mv |
Article |
bklname |
Elektrotechnik: Allgemeines Computeranwendungen Informatik: Allgemeines |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |
authorswithroles_txt_mv |
He, Xiaoqiang @@aut@@ Yu, Hongxing @@oth@@ Jiang, Guangming @@oth@@ Dang, Gaojian @@oth@@ Wu, Dan @@oth@@ Zhang, Yu @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV00295916X |
dewey-sort |
3530 |
id |
ELV023136251 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV023136251</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625140804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jnucmat.2014.03.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014022000002.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV023136251</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-3115(14)00160-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.06</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Xiaoqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Hongxing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Guangming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dang, Gaojian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Dan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">He, Fuliang ELSEVIER</subfield><subfield code="t">An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00295916X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:451</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:55-64</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jnucmat.2014.03.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="j">Elektrotechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.06</subfield><subfield code="j">Computeranwendungen</subfield><subfield code="x">Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">451</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="h">55-64</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
He, Xiaoqiang |
spellingShingle |
He, Xiaoqiang ddc 530 ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation |
authorStr |
He, Xiaoqiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00295916X |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation |
topic |
ddc 530 ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 |
topic_unstemmed |
ddc 530 ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 |
topic_browse |
ddc 530 ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h y hy g j gj g d gd d w dw y z yz |
hierarchy_parent_title |
An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |
hierarchy_parent_id |
ELV00295916X |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00295916X |
title |
Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation |
ctrlnum |
(DE-627)ELV023136251 (ELSEVIER)S0022-3115(14)00160-3 |
title_full |
Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation |
author_sort |
He, Xiaoqiang |
journal |
An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |
journalStr |
An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
55 |
author_browse |
He, Xiaoqiang |
container_volume |
451 |
physical |
10 |
class |
530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
He, Xiaoqiang |
doi_str_mv |
10.1016/j.jnucmat.2014.03.035 |
dewey-full |
530 620 |
title_sort |
cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation |
title_auth |
Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation |
abstract |
Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. |
abstractGer |
Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. |
abstract_unstemmed |
Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
1 |
title_short |
Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation |
url |
https://doi.org/10.1016/j.jnucmat.2014.03.035 |
remote_bool |
true |
author2 |
Yu, Hongxing Jiang, Guangming Dang, Gaojian Wu, Dan Zhang, Yu |
author2Str |
Yu, Hongxing Jiang, Guangming Dang, Gaojian Wu, Dan Zhang, Yu |
ppnlink |
ELV00295916X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.jnucmat.2014.03.035 |
up_date |
2024-07-06T18:05:27.772Z |
_version_ |
1803853892443701248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV023136251</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625140804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jnucmat.2014.03.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014022000002.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV023136251</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-3115(14)00160-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.06</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Xiaoqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923K to 2098K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Hongxing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Guangming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dang, Gaojian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Dan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">He, Fuliang ELSEVIER</subfield><subfield code="t">An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00295916X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:451</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:55-64</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jnucmat.2014.03.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="j">Elektrotechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.06</subfield><subfield code="j">Computeranwendungen</subfield><subfield code="x">Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">451</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="h">55-64</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.402815 |