Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus
Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from clone...
Ausführliche Beschreibung
Autor*in: |
Pretorius, Jakobus M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
7 |
---|
Übergeordnetes Werk: |
Enthalten in: Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions - Xie, Bingyang ELSEVIER, 2022, San Diego, Calif. [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:486 ; year:2015 ; pages:71-77 ; extent:7 |
Links: |
---|
DOI / URN: |
10.1016/j.virol.2015.09.004 |
---|
Katalog-ID: |
ELV02322472X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV02322472X | ||
003 | DE-627 | ||
005 | 20230625140952.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.virol.2015.09.004 |2 doi | |
028 | 5 | 2 | |a GBVA2015001000015.pica |
035 | |a (DE-627)ELV02322472X | ||
035 | |a (ELSEVIER)S0042-6822(15)00395-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 610 |a 570 | |
082 | 0 | 4 | |a 610 |q DE-600 |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 600 |a 690 |q VZ |
084 | |a 51.00 |2 bkl | ||
084 | |a 51.32 |2 bkl | ||
100 | 1 | |a Pretorius, Jakobus M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus |
264 | 1 | |c 2015transfer abstract | |
300 | |a 7 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. | ||
520 | |a Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. | ||
650 | 7 | |a T7 RNA polymerase |2 Elsevier | |
650 | 7 | |a DsRNA |2 Elsevier | |
650 | 7 | |a Orbivirus |2 Elsevier | |
650 | 7 | |a Reverse genetics |2 Elsevier | |
650 | 7 | |a Reverse genetics plasmid |2 Elsevier | |
650 | 7 | |a Reassortment |2 Elsevier | |
650 | 7 | |a Genome modification |2 Elsevier | |
650 | 7 | |a Bluetongue virus |2 Elsevier | |
700 | 1 | |a Huismans, Henk |4 oth | |
700 | 1 | |a Theron, Jacques |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Xie, Bingyang ELSEVIER |t Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions |d 2022 |g San Diego, Calif. [u.a.] |w (DE-627)ELV008536686 |
773 | 1 | 8 | |g volume:486 |g year:2015 |g pages:71-77 |g extent:7 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.virol.2015.09.004 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
936 | b | k | |a 51.32 |j Werkstoffmechanik |q VZ |
951 | |a AR | ||
952 | |d 486 |j 2015 |h 71-77 |g 7 | ||
953 | |2 045F |a 610 |
author_variant |
j m p jm jmp |
---|---|
matchkey_str |
pretoriusjakobusmhuismanshenktheronjacqu:2015----:salsmnoaetrlpamdaervreeeisyt |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
51.00 51.32 |
publishDate |
2015 |
allfields |
10.1016/j.virol.2015.09.004 doi GBVA2015001000015.pica (DE-627)ELV02322472X (ELSEVIER)S0042-6822(15)00395-5 DE-627 ger DE-627 rakwb eng 610 570 610 DE-600 570 DE-600 600 690 VZ 51.00 bkl 51.32 bkl Pretorius, Jakobus M. verfasserin aut Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus 2015transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. T7 RNA polymerase Elsevier DsRNA Elsevier Orbivirus Elsevier Reverse genetics Elsevier Reverse genetics plasmid Elsevier Reassortment Elsevier Genome modification Elsevier Bluetongue virus Elsevier Huismans, Henk oth Theron, Jacques oth Enthalten in Elsevier Xie, Bingyang ELSEVIER Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions 2022 San Diego, Calif. [u.a.] (DE-627)ELV008536686 volume:486 year:2015 pages:71-77 extent:7 https://doi.org/10.1016/j.virol.2015.09.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ 51.32 Werkstoffmechanik VZ AR 486 2015 71-77 7 045F 610 |
spelling |
10.1016/j.virol.2015.09.004 doi GBVA2015001000015.pica (DE-627)ELV02322472X (ELSEVIER)S0042-6822(15)00395-5 DE-627 ger DE-627 rakwb eng 610 570 610 DE-600 570 DE-600 600 690 VZ 51.00 bkl 51.32 bkl Pretorius, Jakobus M. verfasserin aut Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus 2015transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. T7 RNA polymerase Elsevier DsRNA Elsevier Orbivirus Elsevier Reverse genetics Elsevier Reverse genetics plasmid Elsevier Reassortment Elsevier Genome modification Elsevier Bluetongue virus Elsevier Huismans, Henk oth Theron, Jacques oth Enthalten in Elsevier Xie, Bingyang ELSEVIER Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions 2022 San Diego, Calif. [u.a.] (DE-627)ELV008536686 volume:486 year:2015 pages:71-77 extent:7 https://doi.org/10.1016/j.virol.2015.09.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ 51.32 Werkstoffmechanik VZ AR 486 2015 71-77 7 045F 610 |
allfields_unstemmed |
10.1016/j.virol.2015.09.004 doi GBVA2015001000015.pica (DE-627)ELV02322472X (ELSEVIER)S0042-6822(15)00395-5 DE-627 ger DE-627 rakwb eng 610 570 610 DE-600 570 DE-600 600 690 VZ 51.00 bkl 51.32 bkl Pretorius, Jakobus M. verfasserin aut Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus 2015transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. T7 RNA polymerase Elsevier DsRNA Elsevier Orbivirus Elsevier Reverse genetics Elsevier Reverse genetics plasmid Elsevier Reassortment Elsevier Genome modification Elsevier Bluetongue virus Elsevier Huismans, Henk oth Theron, Jacques oth Enthalten in Elsevier Xie, Bingyang ELSEVIER Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions 2022 San Diego, Calif. [u.a.] (DE-627)ELV008536686 volume:486 year:2015 pages:71-77 extent:7 https://doi.org/10.1016/j.virol.2015.09.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ 51.32 Werkstoffmechanik VZ AR 486 2015 71-77 7 045F 610 |
allfieldsGer |
10.1016/j.virol.2015.09.004 doi GBVA2015001000015.pica (DE-627)ELV02322472X (ELSEVIER)S0042-6822(15)00395-5 DE-627 ger DE-627 rakwb eng 610 570 610 DE-600 570 DE-600 600 690 VZ 51.00 bkl 51.32 bkl Pretorius, Jakobus M. verfasserin aut Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus 2015transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. T7 RNA polymerase Elsevier DsRNA Elsevier Orbivirus Elsevier Reverse genetics Elsevier Reverse genetics plasmid Elsevier Reassortment Elsevier Genome modification Elsevier Bluetongue virus Elsevier Huismans, Henk oth Theron, Jacques oth Enthalten in Elsevier Xie, Bingyang ELSEVIER Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions 2022 San Diego, Calif. [u.a.] (DE-627)ELV008536686 volume:486 year:2015 pages:71-77 extent:7 https://doi.org/10.1016/j.virol.2015.09.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ 51.32 Werkstoffmechanik VZ AR 486 2015 71-77 7 045F 610 |
allfieldsSound |
10.1016/j.virol.2015.09.004 doi GBVA2015001000015.pica (DE-627)ELV02322472X (ELSEVIER)S0042-6822(15)00395-5 DE-627 ger DE-627 rakwb eng 610 570 610 DE-600 570 DE-600 600 690 VZ 51.00 bkl 51.32 bkl Pretorius, Jakobus M. verfasserin aut Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus 2015transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. T7 RNA polymerase Elsevier DsRNA Elsevier Orbivirus Elsevier Reverse genetics Elsevier Reverse genetics plasmid Elsevier Reassortment Elsevier Genome modification Elsevier Bluetongue virus Elsevier Huismans, Henk oth Theron, Jacques oth Enthalten in Elsevier Xie, Bingyang ELSEVIER Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions 2022 San Diego, Calif. [u.a.] (DE-627)ELV008536686 volume:486 year:2015 pages:71-77 extent:7 https://doi.org/10.1016/j.virol.2015.09.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ 51.32 Werkstoffmechanik VZ AR 486 2015 71-77 7 045F 610 |
language |
English |
source |
Enthalten in Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions San Diego, Calif. [u.a.] volume:486 year:2015 pages:71-77 extent:7 |
sourceStr |
Enthalten in Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions San Diego, Calif. [u.a.] volume:486 year:2015 pages:71-77 extent:7 |
format_phy_str_mv |
Article |
bklname |
Werkstoffkunde: Allgemeines Werkstoffmechanik |
institution |
findex.gbv.de |
topic_facet |
T7 RNA polymerase DsRNA Orbivirus Reverse genetics Reverse genetics plasmid Reassortment Genome modification Bluetongue virus |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions |
authorswithroles_txt_mv |
Pretorius, Jakobus M. @@aut@@ Huismans, Henk @@oth@@ Theron, Jacques @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV008536686 |
dewey-sort |
3610 |
id |
ELV02322472X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV02322472X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625140952.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.virol.2015.09.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015001000015.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV02322472X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0042-6822(15)00395-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pretorius, Jakobus M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">T7 RNA polymerase</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DsRNA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orbivirus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reverse genetics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reverse genetics plasmid</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reassortment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Genome modification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bluetongue virus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huismans, Henk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Theron, Jacques</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xie, Bingyang ELSEVIER</subfield><subfield code="t">Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions</subfield><subfield code="d">2022</subfield><subfield code="g">San Diego, Calif. [u.a.]</subfield><subfield code="w">(DE-627)ELV008536686</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:486</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:71-77</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.virol.2015.09.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">486</subfield><subfield code="j">2015</subfield><subfield code="h">71-77</subfield><subfield code="g">7</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
author |
Pretorius, Jakobus M. |
spellingShingle |
Pretorius, Jakobus M. ddc 610 ddc 570 ddc 600 bkl 51.00 bkl 51.32 Elsevier T7 RNA polymerase Elsevier DsRNA Elsevier Orbivirus Elsevier Reverse genetics Elsevier Reverse genetics plasmid Elsevier Reassortment Elsevier Genome modification Elsevier Bluetongue virus Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus |
authorStr |
Pretorius, Jakobus M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008536686 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology 600 - Technology 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 570 610 DE-600 570 DE-600 600 690 VZ 51.00 bkl 51.32 bkl Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus T7 RNA polymerase Elsevier DsRNA Elsevier Orbivirus Elsevier Reverse genetics Elsevier Reverse genetics plasmid Elsevier Reassortment Elsevier Genome modification Elsevier Bluetongue virus Elsevier |
topic |
ddc 610 ddc 570 ddc 600 bkl 51.00 bkl 51.32 Elsevier T7 RNA polymerase Elsevier DsRNA Elsevier Orbivirus Elsevier Reverse genetics Elsevier Reverse genetics plasmid Elsevier Reassortment Elsevier Genome modification Elsevier Bluetongue virus |
topic_unstemmed |
ddc 610 ddc 570 ddc 600 bkl 51.00 bkl 51.32 Elsevier T7 RNA polymerase Elsevier DsRNA Elsevier Orbivirus Elsevier Reverse genetics Elsevier Reverse genetics plasmid Elsevier Reassortment Elsevier Genome modification Elsevier Bluetongue virus |
topic_browse |
ddc 610 ddc 570 ddc 600 bkl 51.00 bkl 51.32 Elsevier T7 RNA polymerase Elsevier DsRNA Elsevier Orbivirus Elsevier Reverse genetics Elsevier Reverse genetics plasmid Elsevier Reassortment Elsevier Genome modification Elsevier Bluetongue virus |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h h hh j t jt |
hierarchy_parent_title |
Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions |
hierarchy_parent_id |
ELV008536686 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology 600 - Technology 690 - Building & construction |
hierarchy_top_title |
Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008536686 |
title |
Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus |
ctrlnum |
(DE-627)ELV02322472X (ELSEVIER)S0042-6822(15)00395-5 |
title_full |
Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus |
author_sort |
Pretorius, Jakobus M. |
journal |
Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions |
journalStr |
Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
71 |
author_browse |
Pretorius, Jakobus M. |
container_volume |
486 |
physical |
7 |
class |
610 570 610 DE-600 570 DE-600 600 690 VZ 51.00 bkl 51.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Pretorius, Jakobus M. |
doi_str_mv |
10.1016/j.virol.2015.09.004 |
dewey-full |
610 570 600 690 |
title_sort |
establishment of an entirely plasmid-based reverse genetics system for bluetongue virus |
title_auth |
Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus |
abstract |
Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. |
abstractGer |
Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. |
abstract_unstemmed |
Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus |
url |
https://doi.org/10.1016/j.virol.2015.09.004 |
remote_bool |
true |
author2 |
Huismans, Henk Theron, Jacques |
author2Str |
Huismans, Henk Theron, Jacques |
ppnlink |
ELV008536686 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.virol.2015.09.004 |
up_date |
2024-07-06T18:20:00.520Z |
_version_ |
1803854807587356672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV02322472X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625140952.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.virol.2015.09.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015001000015.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV02322472X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0042-6822(15)00395-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pretorius, Jakobus M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">T7 RNA polymerase</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DsRNA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orbivirus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reverse genetics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reverse genetics plasmid</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reassortment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Genome modification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bluetongue virus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huismans, Henk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Theron, Jacques</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xie, Bingyang ELSEVIER</subfield><subfield code="t">Resistive switching in 2D bismuth oxyhalide nanosheets for nonvolatile memory and emulation of leaky integrate-and-fire functions</subfield><subfield code="d">2022</subfield><subfield code="g">San Diego, Calif. [u.a.]</subfield><subfield code="w">(DE-627)ELV008536686</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:486</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:71-77</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.virol.2015.09.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">486</subfield><subfield code="j">2015</subfield><subfield code="h">71-77</subfield><subfield code="g">7</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
score |
7.401102 |