Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators
We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in...
Ausführliche Beschreibung
Autor*in: |
Kohlenbach, Ulrich [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
24 |
---|
Übergeordnetes Werk: |
Enthalten in: In silico drug repurposing in COVID-19: A network-based analysis - Sibilio, Pasquale ELSEVIER, 2021, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:423 ; year:2015 ; number:2 ; day:15 ; month:03 ; pages:1089-1112 ; extent:24 |
Links: |
---|
DOI / URN: |
10.1016/j.jmaa.2014.10.035 |
---|
Katalog-ID: |
ELV024018643 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV024018643 | ||
003 | DE-627 | ||
005 | 20230625142031.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmaa.2014.10.035 |2 doi | |
028 | 5 | 2 | |a GBVA2015022000020.pica |
035 | |a (DE-627)ELV024018643 | ||
035 | |a (ELSEVIER)S0022-247X(14)00962-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Kohlenbach, Ulrich |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators |
264 | 1 | |c 2015transfer abstract | |
300 | |a 24 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. | ||
520 | |a We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. | ||
650 | 7 | |a Cauchy problems |2 Elsevier | |
650 | 7 | |a Partial differential equations |2 Elsevier | |
650 | 7 | |a Proof mining |2 Elsevier | |
650 | 7 | |a Rate of metastability |2 Elsevier | |
650 | 7 | |a Rate of convergence |2 Elsevier | |
650 | 7 | |a Accretive operator |2 Elsevier | |
700 | 1 | |a Koutsoukou-Argyraki, Angeliki |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Sibilio, Pasquale ELSEVIER |t In silico drug repurposing in COVID-19: A network-based analysis |d 2021 |g Amsterdam [u.a.] |w (DE-627)ELV006634001 |
773 | 1 | 8 | |g volume:423 |g year:2015 |g number:2 |g day:15 |g month:03 |g pages:1089-1112 |g extent:24 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmaa.2014.10.035 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 423 |j 2015 |e 2 |b 15 |c 0315 |h 1089-1112 |g 24 | ||
953 | |2 045F |a 510 |
author_variant |
u k uk |
---|---|
matchkey_str |
kohlenbachulrichkoutsoukouargyrakiangeli:2015----:aeocnegnenmtsaiiyoasrccuhpolmgnrt |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
44.40 |
publishDate |
2015 |
allfields |
10.1016/j.jmaa.2014.10.035 doi GBVA2015022000020.pica (DE-627)ELV024018643 (ELSEVIER)S0022-247X(14)00962-7 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Kohlenbach, Ulrich verfasserin aut Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators 2015transfer abstract 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. Cauchy problems Elsevier Partial differential equations Elsevier Proof mining Elsevier Rate of metastability Elsevier Rate of convergence Elsevier Accretive operator Elsevier Koutsoukou-Argyraki, Angeliki oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:423 year:2015 number:2 day:15 month:03 pages:1089-1112 extent:24 https://doi.org/10.1016/j.jmaa.2014.10.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 423 2015 2 15 0315 1089-1112 24 045F 510 |
spelling |
10.1016/j.jmaa.2014.10.035 doi GBVA2015022000020.pica (DE-627)ELV024018643 (ELSEVIER)S0022-247X(14)00962-7 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Kohlenbach, Ulrich verfasserin aut Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators 2015transfer abstract 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. Cauchy problems Elsevier Partial differential equations Elsevier Proof mining Elsevier Rate of metastability Elsevier Rate of convergence Elsevier Accretive operator Elsevier Koutsoukou-Argyraki, Angeliki oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:423 year:2015 number:2 day:15 month:03 pages:1089-1112 extent:24 https://doi.org/10.1016/j.jmaa.2014.10.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 423 2015 2 15 0315 1089-1112 24 045F 510 |
allfields_unstemmed |
10.1016/j.jmaa.2014.10.035 doi GBVA2015022000020.pica (DE-627)ELV024018643 (ELSEVIER)S0022-247X(14)00962-7 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Kohlenbach, Ulrich verfasserin aut Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators 2015transfer abstract 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. Cauchy problems Elsevier Partial differential equations Elsevier Proof mining Elsevier Rate of metastability Elsevier Rate of convergence Elsevier Accretive operator Elsevier Koutsoukou-Argyraki, Angeliki oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:423 year:2015 number:2 day:15 month:03 pages:1089-1112 extent:24 https://doi.org/10.1016/j.jmaa.2014.10.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 423 2015 2 15 0315 1089-1112 24 045F 510 |
allfieldsGer |
10.1016/j.jmaa.2014.10.035 doi GBVA2015022000020.pica (DE-627)ELV024018643 (ELSEVIER)S0022-247X(14)00962-7 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Kohlenbach, Ulrich verfasserin aut Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators 2015transfer abstract 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. Cauchy problems Elsevier Partial differential equations Elsevier Proof mining Elsevier Rate of metastability Elsevier Rate of convergence Elsevier Accretive operator Elsevier Koutsoukou-Argyraki, Angeliki oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:423 year:2015 number:2 day:15 month:03 pages:1089-1112 extent:24 https://doi.org/10.1016/j.jmaa.2014.10.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 423 2015 2 15 0315 1089-1112 24 045F 510 |
allfieldsSound |
10.1016/j.jmaa.2014.10.035 doi GBVA2015022000020.pica (DE-627)ELV024018643 (ELSEVIER)S0022-247X(14)00962-7 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Kohlenbach, Ulrich verfasserin aut Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators 2015transfer abstract 24 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. Cauchy problems Elsevier Partial differential equations Elsevier Proof mining Elsevier Rate of metastability Elsevier Rate of convergence Elsevier Accretive operator Elsevier Koutsoukou-Argyraki, Angeliki oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:423 year:2015 number:2 day:15 month:03 pages:1089-1112 extent:24 https://doi.org/10.1016/j.jmaa.2014.10.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 423 2015 2 15 0315 1089-1112 24 045F 510 |
language |
English |
source |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:423 year:2015 number:2 day:15 month:03 pages:1089-1112 extent:24 |
sourceStr |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:423 year:2015 number:2 day:15 month:03 pages:1089-1112 extent:24 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Cauchy problems Partial differential equations Proof mining Rate of metastability Rate of convergence Accretive operator |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
In silico drug repurposing in COVID-19: A network-based analysis |
authorswithroles_txt_mv |
Kohlenbach, Ulrich @@aut@@ Koutsoukou-Argyraki, Angeliki @@oth@@ |
publishDateDaySort_date |
2015-01-15T00:00:00Z |
hierarchy_top_id |
ELV006634001 |
dewey-sort |
3510 |
id |
ELV024018643 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024018643</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625142031.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2014.10.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015022000020.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024018643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(14)00962-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kohlenbach, Ulrich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">24</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cauchy problems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial differential equations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proof mining</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rate of metastability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rate of convergence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Accretive operator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koutsoukou-Argyraki, Angeliki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:423</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1089-1112</subfield><subfield code="g">extent:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2014.10.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">423</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">1089-1112</subfield><subfield code="g">24</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Kohlenbach, Ulrich |
spellingShingle |
Kohlenbach, Ulrich ddc 510 ddc 610 bkl 44.40 Elsevier Cauchy problems Elsevier Partial differential equations Elsevier Proof mining Elsevier Rate of metastability Elsevier Rate of convergence Elsevier Accretive operator Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators |
authorStr |
Kohlenbach, Ulrich |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006634001 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 610 VZ 44.40 bkl Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators Cauchy problems Elsevier Partial differential equations Elsevier Proof mining Elsevier Rate of metastability Elsevier Rate of convergence Elsevier Accretive operator Elsevier |
topic |
ddc 510 ddc 610 bkl 44.40 Elsevier Cauchy problems Elsevier Partial differential equations Elsevier Proof mining Elsevier Rate of metastability Elsevier Rate of convergence Elsevier Accretive operator |
topic_unstemmed |
ddc 510 ddc 610 bkl 44.40 Elsevier Cauchy problems Elsevier Partial differential equations Elsevier Proof mining Elsevier Rate of metastability Elsevier Rate of convergence Elsevier Accretive operator |
topic_browse |
ddc 510 ddc 610 bkl 44.40 Elsevier Cauchy problems Elsevier Partial differential equations Elsevier Proof mining Elsevier Rate of metastability Elsevier Rate of convergence Elsevier Accretive operator |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a k a aka |
hierarchy_parent_title |
In silico drug repurposing in COVID-19: A network-based analysis |
hierarchy_parent_id |
ELV006634001 |
dewey-tens |
510 - Mathematics 610 - Medicine & health |
hierarchy_top_title |
In silico drug repurposing in COVID-19: A network-based analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006634001 |
title |
Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators |
ctrlnum |
(DE-627)ELV024018643 (ELSEVIER)S0022-247X(14)00962-7 |
title_full |
Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators |
author_sort |
Kohlenbach, Ulrich |
journal |
In silico drug repurposing in COVID-19: A network-based analysis |
journalStr |
In silico drug repurposing in COVID-19: A network-based analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
1089 |
author_browse |
Kohlenbach, Ulrich |
container_volume |
423 |
physical |
24 |
class |
510 510 DE-600 610 VZ 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kohlenbach, Ulrich |
doi_str_mv |
10.1016/j.jmaa.2014.10.035 |
dewey-full |
510 610 |
title_sort |
rates of convergence and metastability for abstract cauchy problems generated by accretive operators |
title_auth |
Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators |
abstract |
We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. |
abstractGer |
We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. |
abstract_unstemmed |
We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA |
container_issue |
2 |
title_short |
Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators |
url |
https://doi.org/10.1016/j.jmaa.2014.10.035 |
remote_bool |
true |
author2 |
Koutsoukou-Argyraki, Angeliki |
author2Str |
Koutsoukou-Argyraki, Angeliki |
ppnlink |
ELV006634001 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jmaa.2014.10.035 |
up_date |
2024-07-06T20:19:01.418Z |
_version_ |
1803862295360569344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024018643</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625142031.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2014.10.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015022000020.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024018643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(14)00962-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kohlenbach, Ulrich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">24</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We extract rates of convergence and rates of metastability (in the sense of Tao) for convergence results regarding abstract Cauchy problems generated by ϕ-accretive at zero operators A : D ( A ) ( ⊆ X ) → 2 X where X is a real Banach space, proved in [8], by proof-theoretic analysis of the proofs in [8] and having assumed a new, stronger notion of uniform accretivity at zero, yielding a new notion of modulus of accretivity. We compute the rate of metastability for the convergence of the solution of the abstract Cauchy problem generated by a uniformly accretive at zero operator to the unique zero of A via proof mining based on a result by the first author. Finally, we apply our results to a special class of Cauchy problems considered in [8]. This work is the first application of proof mining to the theory of partial differential equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cauchy problems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial differential equations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proof mining</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rate of metastability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rate of convergence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Accretive operator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koutsoukou-Argyraki, Angeliki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:423</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1089-1112</subfield><subfield code="g">extent:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2014.10.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">423</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">1089-1112</subfield><subfield code="g">24</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.400694 |