Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin
Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Sh...
Ausführliche Beschreibung
Autor*in: |
Olsen, Jørgen L. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Umfang: |
13 |
---|
Übergeordnetes Werk: |
Enthalten in: Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution - Abdullah, N. ELSEVIER, 2016, an interdisciplinary journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:159 ; year:2015 ; day:15 ; month:03 ; pages:57-69 ; extent:13 |
Links: |
---|
DOI / URN: |
10.1016/j.rse.2014.11.029 |
---|
Katalog-ID: |
ELV024089974 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV024089974 | ||
003 | DE-627 | ||
005 | 20230625142219.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.rse.2014.11.029 |2 doi | |
028 | 5 | 2 | |a GBVA2015023000026.pica |
035 | |a (DE-627)ELV024089974 | ||
035 | |a (ELSEVIER)S0034-4257(14)00483-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 050 |a 550 | |
082 | 0 | 4 | |a 050 |q DE-600 |
082 | 0 | 4 | |a 550 |q DE-600 |
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 530 |a 600 |a 670 |q VZ |
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Olsen, Jørgen L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin |
264 | 1 | |c 2015transfer abstract | |
300 | |a 13 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. | ||
520 | |a Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. | ||
700 | 1 | |a Stisen, Simon |4 oth | |
700 | 1 | |a Proud, Simon R. |4 oth | |
700 | 1 | |a Fensholt, Rasmus |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Abdullah, N. ELSEVIER |t Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |d 2016 |d an interdisciplinary journal |g Amsterdam [u.a.] |w (DE-627)ELV013680773 |
773 | 1 | 8 | |g volume:159 |g year:2015 |g day:15 |g month:03 |g pages:57-69 |g extent:13 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.rse.2014.11.029 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_40 | ||
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 159 |j 2015 |b 15 |c 0315 |h 57-69 |g 13 | ||
953 | |2 045F |a 050 |
author_variant |
j l o jl jlo |
---|---|
matchkey_str |
olsenjrgenlstisensimonproudsimonrfenshol:2015----:vlaigoaecnpwtrtesrmesnlyernenvadiswtmdldvptas |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
51.00 |
publishDate |
2015 |
allfields |
10.1016/j.rse.2014.11.029 doi GBVA2015023000026.pica (DE-627)ELV024089974 (ELSEVIER)S0034-4257(14)00483-0 DE-627 ger DE-627 rakwb eng 050 550 050 DE-600 550 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Olsen, Jørgen L. verfasserin aut Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin 2015transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. Stisen, Simon oth Proud, Simon R. oth Fensholt, Rasmus oth Enthalten in Elsevier Science Abdullah, N. ELSEVIER Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution 2016 an interdisciplinary journal Amsterdam [u.a.] (DE-627)ELV013680773 volume:159 year:2015 day:15 month:03 pages:57-69 extent:13 https://doi.org/10.1016/j.rse.2014.11.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 159 2015 15 0315 57-69 13 045F 050 |
spelling |
10.1016/j.rse.2014.11.029 doi GBVA2015023000026.pica (DE-627)ELV024089974 (ELSEVIER)S0034-4257(14)00483-0 DE-627 ger DE-627 rakwb eng 050 550 050 DE-600 550 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Olsen, Jørgen L. verfasserin aut Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin 2015transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. Stisen, Simon oth Proud, Simon R. oth Fensholt, Rasmus oth Enthalten in Elsevier Science Abdullah, N. ELSEVIER Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution 2016 an interdisciplinary journal Amsterdam [u.a.] (DE-627)ELV013680773 volume:159 year:2015 day:15 month:03 pages:57-69 extent:13 https://doi.org/10.1016/j.rse.2014.11.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 159 2015 15 0315 57-69 13 045F 050 |
allfields_unstemmed |
10.1016/j.rse.2014.11.029 doi GBVA2015023000026.pica (DE-627)ELV024089974 (ELSEVIER)S0034-4257(14)00483-0 DE-627 ger DE-627 rakwb eng 050 550 050 DE-600 550 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Olsen, Jørgen L. verfasserin aut Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin 2015transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. Stisen, Simon oth Proud, Simon R. oth Fensholt, Rasmus oth Enthalten in Elsevier Science Abdullah, N. ELSEVIER Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution 2016 an interdisciplinary journal Amsterdam [u.a.] (DE-627)ELV013680773 volume:159 year:2015 day:15 month:03 pages:57-69 extent:13 https://doi.org/10.1016/j.rse.2014.11.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 159 2015 15 0315 57-69 13 045F 050 |
allfieldsGer |
10.1016/j.rse.2014.11.029 doi GBVA2015023000026.pica (DE-627)ELV024089974 (ELSEVIER)S0034-4257(14)00483-0 DE-627 ger DE-627 rakwb eng 050 550 050 DE-600 550 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Olsen, Jørgen L. verfasserin aut Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin 2015transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. Stisen, Simon oth Proud, Simon R. oth Fensholt, Rasmus oth Enthalten in Elsevier Science Abdullah, N. ELSEVIER Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution 2016 an interdisciplinary journal Amsterdam [u.a.] (DE-627)ELV013680773 volume:159 year:2015 day:15 month:03 pages:57-69 extent:13 https://doi.org/10.1016/j.rse.2014.11.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 159 2015 15 0315 57-69 13 045F 050 |
allfieldsSound |
10.1016/j.rse.2014.11.029 doi GBVA2015023000026.pica (DE-627)ELV024089974 (ELSEVIER)S0034-4257(14)00483-0 DE-627 ger DE-627 rakwb eng 050 550 050 DE-600 550 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Olsen, Jørgen L. verfasserin aut Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin 2015transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. Stisen, Simon oth Proud, Simon R. oth Fensholt, Rasmus oth Enthalten in Elsevier Science Abdullah, N. ELSEVIER Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution 2016 an interdisciplinary journal Amsterdam [u.a.] (DE-627)ELV013680773 volume:159 year:2015 day:15 month:03 pages:57-69 extent:13 https://doi.org/10.1016/j.rse.2014.11.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 159 2015 15 0315 57-69 13 045F 050 |
language |
English |
source |
Enthalten in Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution Amsterdam [u.a.] volume:159 year:2015 day:15 month:03 pages:57-69 extent:13 |
sourceStr |
Enthalten in Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution Amsterdam [u.a.] volume:159 year:2015 day:15 month:03 pages:57-69 extent:13 |
format_phy_str_mv |
Article |
bklname |
Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
dewey-raw |
050 |
isfreeaccess_bool |
false |
container_title |
Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |
authorswithroles_txt_mv |
Olsen, Jørgen L. @@aut@@ Stisen, Simon @@oth@@ Proud, Simon R. @@oth@@ Fensholt, Rasmus @@oth@@ |
publishDateDaySort_date |
2015-01-15T00:00:00Z |
hierarchy_top_id |
ELV013680773 |
dewey-sort |
250 |
id |
ELV024089974 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024089974</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625142219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rse.2014.11.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015023000026.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024089974</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0034-4257(14)00483-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">050</subfield><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Olsen, Jørgen L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stisen, Simon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Proud, Simon R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fensholt, Rasmus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Abdullah, N. ELSEVIER</subfield><subfield code="t">Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution</subfield><subfield code="d">2016</subfield><subfield code="d">an interdisciplinary journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013680773</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:159</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:57-69</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.rse.2014.11.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">159</subfield><subfield code="j">2015</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">57-69</subfield><subfield code="g">13</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">050</subfield></datafield></record></collection>
|
author |
Olsen, Jørgen L. |
spellingShingle |
Olsen, Jørgen L. ddc 050 ddc 550 ddc 660 ddc 530 bkl 51.00 Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin |
authorStr |
Olsen, Jørgen L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013680773 |
format |
electronic Article |
dewey-ones |
050 - General serial publications 550 - Earth sciences 660 - Chemical engineering 530 - Physics 600 - Technology 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
050 550 050 DE-600 550 DE-600 660 VZ 530 600 670 VZ 51.00 bkl Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin |
topic |
ddc 050 ddc 550 ddc 660 ddc 530 bkl 51.00 |
topic_unstemmed |
ddc 050 ddc 550 ddc 660 ddc 530 bkl 51.00 |
topic_browse |
ddc 050 ddc 550 ddc 660 ddc 530 bkl 51.00 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s s ss s r p sr srp r f rf |
hierarchy_parent_title |
Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |
hierarchy_parent_id |
ELV013680773 |
dewey-tens |
050 - Magazines, journals & serials 550 - Earth sciences & geology 660 - Chemical engineering 530 - Physics 600 - Technology 670 - Manufacturing |
hierarchy_top_title |
Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013680773 |
title |
Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin |
ctrlnum |
(DE-627)ELV024089974 (ELSEVIER)S0034-4257(14)00483-0 |
title_full |
Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin |
author_sort |
Olsen, Jørgen L. |
journal |
Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |
journalStr |
Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
57 |
author_browse |
Olsen, Jørgen L. |
container_volume |
159 |
physical |
13 |
class |
050 550 050 DE-600 550 DE-600 660 VZ 530 600 670 VZ 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Olsen, Jørgen L. |
doi_str_mv |
10.1016/j.rse.2014.11.029 |
dewey-full |
050 550 660 530 600 670 |
title_sort |
evaluating eo-based canopy water stress from seasonally detrended ndvi and siwsi with modeled evapotranspiration in the senegal river basin |
title_auth |
Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin |
abstract |
Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. |
abstractGer |
Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. |
abstract_unstemmed |
Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 |
title_short |
Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin |
url |
https://doi.org/10.1016/j.rse.2014.11.029 |
remote_bool |
true |
author2 |
Stisen, Simon Proud, Simon R. Fensholt, Rasmus |
author2Str |
Stisen, Simon Proud, Simon R. Fensholt, Rasmus |
ppnlink |
ELV013680773 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.rse.2014.11.029 |
up_date |
2024-07-06T20:30:30.160Z |
_version_ |
1803863017557852160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024089974</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625142219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rse.2014.11.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015023000026.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024089974</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0034-4257(14)00483-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">050</subfield><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Olsen, Jørgen L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel, where vegetation is an important part of the natural resource base. In this study we examine if additional information can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when anomaly variations where aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite coarse spatial aggregation is found necessary for a significant analysis outcome.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stisen, Simon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Proud, Simon R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fensholt, Rasmus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Abdullah, N. ELSEVIER</subfield><subfield code="t">Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution</subfield><subfield code="d">2016</subfield><subfield code="d">an interdisciplinary journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013680773</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:159</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:57-69</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.rse.2014.11.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">159</subfield><subfield code="j">2015</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">57-69</subfield><subfield code="g">13</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">050</subfield></datafield></record></collection>
|
score |
7.401991 |