Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model
Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to r...
Ausführliche Beschreibung
Autor*in: |
Kim, Sang Jun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
12 |
---|
Übergeordnetes Werk: |
Enthalten in: Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field - 2012, biomaterials reviews online, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:74 ; year:2016 ; pages:119-130 ; extent:12 |
Links: |
---|
DOI / URN: |
10.1016/j.biomaterials.2015.09.040 |
---|
Katalog-ID: |
ELV024189162 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV024189162 | ||
003 | DE-627 | ||
005 | 20230625142408.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.biomaterials.2015.09.040 |2 doi | |
028 | 5 | 2 | |a GBVA2016003000014.pica |
035 | |a (DE-627)ELV024189162 | ||
035 | |a (ELSEVIER)S0142-9612(15)00791-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 | |
082 | 0 | 4 | |a 570 |q DNB |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 35.70 |2 bkl | ||
084 | |a 42.12 |2 bkl | ||
084 | |a 42.15 |2 bkl | ||
100 | 1 | |a Kim, Sang Jun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model |
264 | 1 | |c 2016transfer abstract | |
300 | |a 12 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. | ||
520 | |a Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. | ||
650 | 7 | |a Substance P |2 Elsevier | |
650 | 7 | |a Self-assembled peptides |2 Elsevier | |
650 | 7 | |a Chondrogenesis |2 Elsevier | |
650 | 7 | |a Osteoarthritis |2 Elsevier | |
650 | 7 | |a Mesenchymal stem cells |2 Elsevier | |
700 | 1 | |a Kim, Ji Eun |4 oth | |
700 | 1 | |a Kim, Su Hee |4 oth | |
700 | 1 | |a Kim, Sun Jeong |4 oth | |
700 | 1 | |a Jeon, Su Jeong |4 oth | |
700 | 1 | |a Kim, Soo Hyun |4 oth | |
700 | 1 | |a Jung, Youngmee |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |t Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field |d 2012 |d biomaterials reviews online |g Amsterdam [u.a.] |w (DE-627)ELV011266368 |
773 | 1 | 8 | |g volume:74 |g year:2016 |g pages:119-130 |g extent:12 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.biomaterials.2015.09.040 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.70 |j Biochemie: Allgemeines |q VZ |
936 | b | k | |a 42.12 |j Biophysik |q VZ |
936 | b | k | |a 42.15 |j Zellbiologie |q VZ |
951 | |a AR | ||
952 | |d 74 |j 2016 |h 119-130 |g 12 | ||
953 | |2 045F |a 570 |
author_variant |
s j k sj sjk |
---|---|
matchkey_str |
kimsangjunkimjieunkimsuheekimsunjeongjeo:2016----:hrpuiefcsferppieusacpopewtslasmldetdnnfbroterg |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
35.70 42.12 42.15 |
publishDate |
2016 |
allfields |
10.1016/j.biomaterials.2015.09.040 doi GBVA2016003000014.pica (DE-627)ELV024189162 (ELSEVIER)S0142-9612(15)00791-7 DE-627 ger DE-627 rakwb eng 570 570 DNB 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Kim, Sang Jun verfasserin aut Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model 2016transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. Substance P Elsevier Self-assembled peptides Elsevier Chondrogenesis Elsevier Osteoarthritis Elsevier Mesenchymal stem cells Elsevier Kim, Ji Eun oth Kim, Su Hee oth Kim, Sun Jeong oth Jeon, Su Jeong oth Kim, Soo Hyun oth Jung, Youngmee oth Enthalten in Elsevier Science Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field 2012 biomaterials reviews online Amsterdam [u.a.] (DE-627)ELV011266368 volume:74 year:2016 pages:119-130 extent:12 https://doi.org/10.1016/j.biomaterials.2015.09.040 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 74 2016 119-130 12 045F 570 |
spelling |
10.1016/j.biomaterials.2015.09.040 doi GBVA2016003000014.pica (DE-627)ELV024189162 (ELSEVIER)S0142-9612(15)00791-7 DE-627 ger DE-627 rakwb eng 570 570 DNB 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Kim, Sang Jun verfasserin aut Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model 2016transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. Substance P Elsevier Self-assembled peptides Elsevier Chondrogenesis Elsevier Osteoarthritis Elsevier Mesenchymal stem cells Elsevier Kim, Ji Eun oth Kim, Su Hee oth Kim, Sun Jeong oth Jeon, Su Jeong oth Kim, Soo Hyun oth Jung, Youngmee oth Enthalten in Elsevier Science Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field 2012 biomaterials reviews online Amsterdam [u.a.] (DE-627)ELV011266368 volume:74 year:2016 pages:119-130 extent:12 https://doi.org/10.1016/j.biomaterials.2015.09.040 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 74 2016 119-130 12 045F 570 |
allfields_unstemmed |
10.1016/j.biomaterials.2015.09.040 doi GBVA2016003000014.pica (DE-627)ELV024189162 (ELSEVIER)S0142-9612(15)00791-7 DE-627 ger DE-627 rakwb eng 570 570 DNB 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Kim, Sang Jun verfasserin aut Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model 2016transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. Substance P Elsevier Self-assembled peptides Elsevier Chondrogenesis Elsevier Osteoarthritis Elsevier Mesenchymal stem cells Elsevier Kim, Ji Eun oth Kim, Su Hee oth Kim, Sun Jeong oth Jeon, Su Jeong oth Kim, Soo Hyun oth Jung, Youngmee oth Enthalten in Elsevier Science Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field 2012 biomaterials reviews online Amsterdam [u.a.] (DE-627)ELV011266368 volume:74 year:2016 pages:119-130 extent:12 https://doi.org/10.1016/j.biomaterials.2015.09.040 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 74 2016 119-130 12 045F 570 |
allfieldsGer |
10.1016/j.biomaterials.2015.09.040 doi GBVA2016003000014.pica (DE-627)ELV024189162 (ELSEVIER)S0142-9612(15)00791-7 DE-627 ger DE-627 rakwb eng 570 570 DNB 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Kim, Sang Jun verfasserin aut Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model 2016transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. Substance P Elsevier Self-assembled peptides Elsevier Chondrogenesis Elsevier Osteoarthritis Elsevier Mesenchymal stem cells Elsevier Kim, Ji Eun oth Kim, Su Hee oth Kim, Sun Jeong oth Jeon, Su Jeong oth Kim, Soo Hyun oth Jung, Youngmee oth Enthalten in Elsevier Science Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field 2012 biomaterials reviews online Amsterdam [u.a.] (DE-627)ELV011266368 volume:74 year:2016 pages:119-130 extent:12 https://doi.org/10.1016/j.biomaterials.2015.09.040 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 74 2016 119-130 12 045F 570 |
allfieldsSound |
10.1016/j.biomaterials.2015.09.040 doi GBVA2016003000014.pica (DE-627)ELV024189162 (ELSEVIER)S0142-9612(15)00791-7 DE-627 ger DE-627 rakwb eng 570 570 DNB 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Kim, Sang Jun verfasserin aut Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model 2016transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. Substance P Elsevier Self-assembled peptides Elsevier Chondrogenesis Elsevier Osteoarthritis Elsevier Mesenchymal stem cells Elsevier Kim, Ji Eun oth Kim, Su Hee oth Kim, Sun Jeong oth Jeon, Su Jeong oth Kim, Soo Hyun oth Jung, Youngmee oth Enthalten in Elsevier Science Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field 2012 biomaterials reviews online Amsterdam [u.a.] (DE-627)ELV011266368 volume:74 year:2016 pages:119-130 extent:12 https://doi.org/10.1016/j.biomaterials.2015.09.040 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 74 2016 119-130 12 045F 570 |
language |
English |
source |
Enthalten in Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field Amsterdam [u.a.] volume:74 year:2016 pages:119-130 extent:12 |
sourceStr |
Enthalten in Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field Amsterdam [u.a.] volume:74 year:2016 pages:119-130 extent:12 |
format_phy_str_mv |
Article |
bklname |
Biochemie: Allgemeines Biophysik Zellbiologie |
institution |
findex.gbv.de |
topic_facet |
Substance P Self-assembled peptides Chondrogenesis Osteoarthritis Mesenchymal stem cells |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field |
authorswithroles_txt_mv |
Kim, Sang Jun @@aut@@ Kim, Ji Eun @@oth@@ Kim, Su Hee @@oth@@ Kim, Sun Jeong @@oth@@ Jeon, Su Jeong @@oth@@ Kim, Soo Hyun @@oth@@ Jung, Youngmee @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV011266368 |
dewey-sort |
3570 |
id |
ELV024189162 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024189162</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625142408.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.biomaterials.2015.09.040</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016003000014.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024189162</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0142-9612(15)00791-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Sang Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Substance P</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-assembled peptides</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chondrogenesis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Osteoarthritis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mesenchymal stem cells</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Ji Eun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Su Hee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Sun Jeong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jeon, Su Jeong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Soo Hyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jung, Youngmee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="t">Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field</subfield><subfield code="d">2012</subfield><subfield code="d">biomaterials reviews online</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011266368</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:119-130</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.biomaterials.2015.09.040</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.15</subfield><subfield code="j">Zellbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2016</subfield><subfield code="h">119-130</subfield><subfield code="g">12</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Kim, Sang Jun |
spellingShingle |
Kim, Sang Jun ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Substance P Elsevier Self-assembled peptides Elsevier Chondrogenesis Elsevier Osteoarthritis Elsevier Mesenchymal stem cells Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model |
authorStr |
Kim, Sang Jun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV011266368 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 570 DNB 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model Substance P Elsevier Self-assembled peptides Elsevier Chondrogenesis Elsevier Osteoarthritis Elsevier Mesenchymal stem cells Elsevier |
topic |
ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Substance P Elsevier Self-assembled peptides Elsevier Chondrogenesis Elsevier Osteoarthritis Elsevier Mesenchymal stem cells |
topic_unstemmed |
ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Substance P Elsevier Self-assembled peptides Elsevier Chondrogenesis Elsevier Osteoarthritis Elsevier Mesenchymal stem cells |
topic_browse |
ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Substance P Elsevier Self-assembled peptides Elsevier Chondrogenesis Elsevier Osteoarthritis Elsevier Mesenchymal stem cells |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j e k je jek s h k sh shk s j k sj sjk s j j sj sjj s h k sh shk y j yj |
hierarchy_parent_title |
Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field |
hierarchy_parent_id |
ELV011266368 |
dewey-tens |
570 - Life sciences; biology |
hierarchy_top_title |
Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV011266368 |
title |
Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model |
ctrlnum |
(DE-627)ELV024189162 (ELSEVIER)S0142-9612(15)00791-7 |
title_full |
Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model |
author_sort |
Kim, Sang Jun |
journal |
Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field |
journalStr |
Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
119 |
author_browse |
Kim, Sang Jun |
container_volume |
74 |
physical |
12 |
class |
570 570 DNB 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kim, Sang Jun |
doi_str_mv |
10.1016/j.biomaterials.2015.09.040 |
dewey-full |
570 |
title_sort |
therapeutic effects of neuropeptide substance p coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model |
title_auth |
Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model |
abstract |
Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. |
abstractGer |
Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. |
abstract_unstemmed |
Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model |
url |
https://doi.org/10.1016/j.biomaterials.2015.09.040 |
remote_bool |
true |
author2 |
Kim, Ji Eun Kim, Su Hee Kim, Sun Jeong Jeon, Su Jeong Kim, Soo Hyun Jung, Youngmee |
author2Str |
Kim, Ji Eun Kim, Su Hee Kim, Sun Jeong Jeon, Su Jeong Kim, Soo Hyun Jung, Youngmee |
ppnlink |
ELV011266368 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.biomaterials.2015.09.040 |
up_date |
2024-07-06T20:46:16.197Z |
_version_ |
1803864009550594048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024189162</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625142408.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.biomaterials.2015.09.040</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016003000014.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024189162</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0142-9612(15)00791-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Sang Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Osteoarthritis (OA) is a progressively degenerative disease that is accompanied by articular cartilage deterioration, sclerosis of the underlying bone and ultimately joint destruction. Although therapeutic medicine and surgical treatment are done to alleviate the symptoms of OA, it is difficult to restore normal cartilage function. Mesenchymal stem cell (MSC) transplantation is one of the therapeutic trials for treating OA due to its potential, and many researchers have recently reported on the effects of MSCs associated with OA therapy. However, cell transplantation has limitations including low stem cell survival rates, limited stem cell sources and long-term ex vivo culturing. In this study, we evaluated the efficacy of neuropeptide substance P coupled with self-assembled peptide hydrogels in a rat knee model to prevent OA by mobilizing endogenous MSCs to the defect site. To assess the effect of the optimal concentration of SP, varying concentrations of bioactive peptides (substance P (SP) with self-assembled peptide (SAP)) were used to treat OA. OA was induced by unilateral anterior cruciate and medial collateral ligament transection of the knee joints. Forty rats were randomly allocated into 5 groups: SAP-0.5SP (17.5 μg of SP), SAP-SP group (35 μg of SP), SAP-2SP group (70 μg of SP), SAP-SP-MSC group, and control group. At 2 weeks post-surgical induction of OA, each mixture was injected into the joint cavity of the left knee. Histologic examination, immunofluorescence staining, quantitative real time-polymerase chain reaction and micro-computed tomography analysis were done at 6 weeks post-surgical induction. As shown by our results, the SAP-SP hydrogel accelerated tissue regeneration by anti-inflammatory modulation shown by an anti-inflammation test using dot-blot in vitro. Additionally, the treatment of OA in the SAP-SP group showed markedly improved cartilage regeneration through the recruitment of MSCs. Thus, these cells could be infiltrating into the defect site for the regeneration of OA defects. In addition, from the behavioral studies on the rats, the number of rears significantly increased 2 and 4 weeks post-injection in all the groups. Our results show that bioactive peptides may have clinical potential for inhibiting the progression of OA as well as its treatment by recruiting autologous stem cells without cell transplantation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Substance P</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-assembled peptides</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chondrogenesis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Osteoarthritis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mesenchymal stem cells</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Ji Eun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Su Hee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Sun Jeong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jeon, Su Jeong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Soo Hyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jung, Youngmee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="t">Lymphotoxin in the Pathogenesis of Autoimmune Pancreatitis: A New Player in the Field</subfield><subfield code="d">2012</subfield><subfield code="d">biomaterials reviews online</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011266368</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:119-130</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.biomaterials.2015.09.040</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.15</subfield><subfield code="j">Zellbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2016</subfield><subfield code="h">119-130</subfield><subfield code="g">12</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.402852 |