Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel
Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–...
Ausführliche Beschreibung
Autor*in: |
Zhao, Ningbo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA - Russell, James ELSEVIER, 2019, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:75 ; year:2016 ; pages:42-51 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.icheatmasstransfer.2016.03.024 |
---|
Katalog-ID: |
ELV024561592 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV024561592 | ||
003 | DE-627 | ||
005 | 20230625143057.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.icheatmasstransfer.2016.03.024 |2 doi | |
028 | 5 | 2 | |a GBVA2016013000029.pica |
035 | |a (DE-627)ELV024561592 | ||
035 | |a (ELSEVIER)S0735-1933(16)30095-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 620 | |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.85 |2 bkl | ||
100 | 1 | |a Zhao, Ningbo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel |
264 | 1 | |c 2016transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. | ||
520 | |a Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. | ||
700 | 1 | |a Yang, Jialong |4 oth | |
700 | 1 | |a Li, Shuying |4 oth | |
700 | 1 | |a Wang, Qiang |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Russell, James ELSEVIER |t WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA |d 2019 |g Amsterdam [u.a.] |w (DE-627)ELV001827731 |
773 | 1 | 8 | |g volume:75 |g year:2016 |g pages:42-51 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.icheatmasstransfer.2016.03.024 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 44.85 |j Kardiologie |j Angiologie |q VZ |
951 | |a AR | ||
952 | |d 75 |j 2016 |h 42-51 |g 10 | ||
953 | |2 045F |a 620 |
author_variant |
n z nz |
---|---|
matchkey_str |
zhaoningboyangjialonglishuyingwangqiang:2016----:ueiaivsiainfaiatemlyruipromneflowtraoli |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
44.85 |
publishDate |
2016 |
allfields |
10.1016/j.icheatmasstransfer.2016.03.024 doi GBVA2016013000029.pica (DE-627)ELV024561592 (ELSEVIER)S0735-1933(16)30095-1 DE-627 ger DE-627 rakwb eng 620 620 DE-600 610 VZ 44.85 bkl Zhao, Ningbo verfasserin aut Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. Yang, Jialong oth Li, Shuying oth Wang, Qiang oth Enthalten in Elsevier Science Russell, James ELSEVIER WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA 2019 Amsterdam [u.a.] (DE-627)ELV001827731 volume:75 year:2016 pages:42-51 extent:10 https://doi.org/10.1016/j.icheatmasstransfer.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 75 2016 42-51 10 045F 620 |
spelling |
10.1016/j.icheatmasstransfer.2016.03.024 doi GBVA2016013000029.pica (DE-627)ELV024561592 (ELSEVIER)S0735-1933(16)30095-1 DE-627 ger DE-627 rakwb eng 620 620 DE-600 610 VZ 44.85 bkl Zhao, Ningbo verfasserin aut Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. Yang, Jialong oth Li, Shuying oth Wang, Qiang oth Enthalten in Elsevier Science Russell, James ELSEVIER WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA 2019 Amsterdam [u.a.] (DE-627)ELV001827731 volume:75 year:2016 pages:42-51 extent:10 https://doi.org/10.1016/j.icheatmasstransfer.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 75 2016 42-51 10 045F 620 |
allfields_unstemmed |
10.1016/j.icheatmasstransfer.2016.03.024 doi GBVA2016013000029.pica (DE-627)ELV024561592 (ELSEVIER)S0735-1933(16)30095-1 DE-627 ger DE-627 rakwb eng 620 620 DE-600 610 VZ 44.85 bkl Zhao, Ningbo verfasserin aut Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. Yang, Jialong oth Li, Shuying oth Wang, Qiang oth Enthalten in Elsevier Science Russell, James ELSEVIER WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA 2019 Amsterdam [u.a.] (DE-627)ELV001827731 volume:75 year:2016 pages:42-51 extent:10 https://doi.org/10.1016/j.icheatmasstransfer.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 75 2016 42-51 10 045F 620 |
allfieldsGer |
10.1016/j.icheatmasstransfer.2016.03.024 doi GBVA2016013000029.pica (DE-627)ELV024561592 (ELSEVIER)S0735-1933(16)30095-1 DE-627 ger DE-627 rakwb eng 620 620 DE-600 610 VZ 44.85 bkl Zhao, Ningbo verfasserin aut Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. Yang, Jialong oth Li, Shuying oth Wang, Qiang oth Enthalten in Elsevier Science Russell, James ELSEVIER WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA 2019 Amsterdam [u.a.] (DE-627)ELV001827731 volume:75 year:2016 pages:42-51 extent:10 https://doi.org/10.1016/j.icheatmasstransfer.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 75 2016 42-51 10 045F 620 |
allfieldsSound |
10.1016/j.icheatmasstransfer.2016.03.024 doi GBVA2016013000029.pica (DE-627)ELV024561592 (ELSEVIER)S0735-1933(16)30095-1 DE-627 ger DE-627 rakwb eng 620 620 DE-600 610 VZ 44.85 bkl Zhao, Ningbo verfasserin aut Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. Yang, Jialong oth Li, Shuying oth Wang, Qiang oth Enthalten in Elsevier Science Russell, James ELSEVIER WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA 2019 Amsterdam [u.a.] (DE-627)ELV001827731 volume:75 year:2016 pages:42-51 extent:10 https://doi.org/10.1016/j.icheatmasstransfer.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 75 2016 42-51 10 045F 620 |
language |
English |
source |
Enthalten in WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA Amsterdam [u.a.] volume:75 year:2016 pages:42-51 extent:10 |
sourceStr |
Enthalten in WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA Amsterdam [u.a.] volume:75 year:2016 pages:42-51 extent:10 |
format_phy_str_mv |
Article |
bklname |
Kardiologie Angiologie |
institution |
findex.gbv.de |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA |
authorswithroles_txt_mv |
Zhao, Ningbo @@aut@@ Yang, Jialong @@oth@@ Li, Shuying @@oth@@ Wang, Qiang @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV001827731 |
dewey-sort |
3620 |
id |
ELV024561592 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024561592</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625143057.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.icheatmasstransfer.2016.03.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016013000029.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024561592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0735-1933(16)30095-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Ningbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jialong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shuying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Russell, James ELSEVIER</subfield><subfield code="t">WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001827731</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:42-51</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.icheatmasstransfer.2016.03.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2016</subfield><subfield code="h">42-51</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
author |
Zhao, Ningbo |
spellingShingle |
Zhao, Ningbo ddc 620 ddc 610 bkl 44.85 Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel |
authorStr |
Zhao, Ningbo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001827731 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 620 DE-600 610 VZ 44.85 bkl Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel |
topic |
ddc 620 ddc 610 bkl 44.85 |
topic_unstemmed |
ddc 620 ddc 610 bkl 44.85 |
topic_browse |
ddc 620 ddc 610 bkl 44.85 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j y jy s l sl q w qw |
hierarchy_parent_title |
WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA |
hierarchy_parent_id |
ELV001827731 |
dewey-tens |
620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001827731 |
title |
Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel |
ctrlnum |
(DE-627)ELV024561592 (ELSEVIER)S0735-1933(16)30095-1 |
title_full |
Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel |
author_sort |
Zhao, Ningbo |
journal |
WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA |
journalStr |
WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
42 |
author_browse |
Zhao, Ningbo |
container_volume |
75 |
physical |
10 |
class |
620 620 DE-600 610 VZ 44.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhao, Ningbo |
doi_str_mv |
10.1016/j.icheatmasstransfer.2016.03.024 |
dewey-full |
620 610 |
title_sort |
numerical investigation of laminar thermal-hydraulic performance of al2o3–water nanofluids in offset strip fins channel |
title_auth |
Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel |
abstract |
Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. |
abstractGer |
Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. |
abstract_unstemmed |
Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel |
url |
https://doi.org/10.1016/j.icheatmasstransfer.2016.03.024 |
remote_bool |
true |
author2 |
Yang, Jialong Li, Shuying Wang, Qiang |
author2Str |
Yang, Jialong Li, Shuying Wang, Qiang |
ppnlink |
ELV001827731 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.icheatmasstransfer.2016.03.024 |
up_date |
2024-07-06T21:45:47.817Z |
_version_ |
1803867754665607168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024561592</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625143057.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.icheatmasstransfer.2016.03.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016013000029.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024561592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0735-1933(16)30095-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Ningbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Using the single-phase based numerical approach, this paper studies the three-dimensional laminar flow and heat transfer behavior of Al2O3–water nanofluids in an offset strip fins channel. Parametric variations are analyzed for explaining the influences of different nanoparticle volume fraction (0%–4%) and Reynolds number (500–1000). The numerical results indicate that both the heat transfer and pressure loss of offset strip fins channel are enhanced significantly with the increases of nanoparticle volume fraction and Reynolds number. At Reynolds number of 1000, the average heat transfer coefficient can be improved by 26.69% when adding 4% volume fraction of Al2O3 nanoparticles in the base fluid. Besides, the Nusselt number of Al2O3–water nanofluids is higher than that of the base fluid at various Reynolds number only when the volume fraction of Al2O3 nanoparticle is more than 2%. Moreover, it is also demonstrated that when the heat transfer rate remains constant, Al2O3–water nanofluids with 1% nanoparticle volume fraction has the most obvious advantage due to the reduction of pumping power.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jialong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shuying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Russell, James ELSEVIER</subfield><subfield code="t">WEATHERING THE STORM: FLECAINIDE INDUCED VENTRICULAR TACHYCARDIA</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001827731</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:42-51</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.icheatmasstransfer.2016.03.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2016</subfield><subfield code="h">42-51</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
score |
7.400528 |