Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach
Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosi...
Ausführliche Beschreibung
Autor*in: |
Ezulike, Obinna Daniel [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
Matrix/fracture permeability and volume Hydraulic fracture half-length Analysis equations from the quadrilinear flow model Capturing secondary fracture effects in triple porosity model |
---|
Umfang: |
17 |
---|
Übergeordnetes Werk: |
Enthalten in: Iterated Gilbert mosaics - Baccelli, Francois ELSEVIER, 2019, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:138 ; year:2016 ; pages:201-217 ; extent:17 |
Links: |
---|
DOI / URN: |
10.1016/j.petrol.2015.11.016 |
---|
Katalog-ID: |
ELV024581364 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV024581364 | ||
003 | DE-627 | ||
005 | 20230625143112.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.petrol.2015.11.016 |2 doi | |
028 | 5 | 2 | |a GBVA2016014000015.pica |
035 | |a (DE-627)ELV024581364 | ||
035 | |a (ELSEVIER)S0920-4105(15)30182-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 660 | |
082 | 0 | 4 | |a 660 |q DE-600 |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 31.70 |2 bkl | ||
100 | 1 | |a Ezulike, Obinna Daniel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach |
264 | 1 | |c 2016transfer abstract | |
300 | |a 17 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. | ||
520 | |a Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. | ||
650 | 7 | |a Matrix/fracture permeability and volume |2 Elsevier | |
650 | 7 | |a Hydraulic fracture half-length |2 Elsevier | |
650 | 7 | |a Analysis equations from the quadrilinear flow model |2 Elsevier | |
650 | 7 | |a Capturing secondary fracture effects in triple porosity model |2 Elsevier | |
650 | 7 | |a Secondary fracture intensity |2 Elsevier | |
650 | 7 | |a Specialised rate-normalised pressure analysis plots |2 Elsevier | |
650 | 7 | |a Uncertainty reduction in model output parameter |2 Elsevier | |
700 | 1 | |a Dehghanpour, Hassan |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Baccelli, Francois ELSEVIER |t Iterated Gilbert mosaics |d 2019 |g Amsterdam [u.a.] |w (DE-627)ELV008094314 |
773 | 1 | 8 | |g volume:138 |g year:2016 |g pages:201-217 |g extent:17 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.petrol.2015.11.016 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
936 | b | k | |a 31.70 |j Wahrscheinlichkeitsrechnung |q VZ |
951 | |a AR | ||
952 | |d 138 |j 2016 |h 201-217 |g 17 | ||
953 | |2 045F |a 660 |
author_variant |
o d e od ode |
---|---|
matchkey_str |
ezulikeobinnadanieldehghanpourhassan:2016----:atrntefetoscnayrcueopoutodtuiglweieqainadpcaie |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
31.70 |
publishDate |
2016 |
allfields |
10.1016/j.petrol.2015.11.016 doi GBVA2016014000015.pica (DE-627)ELV024581364 (ELSEVIER)S0920-4105(15)30182-0 DE-627 ger DE-627 rakwb eng 660 660 DE-600 510 VZ 31.70 bkl Ezulike, Obinna Daniel verfasserin aut Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach 2016transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. Matrix/fracture permeability and volume Elsevier Hydraulic fracture half-length Elsevier Analysis equations from the quadrilinear flow model Elsevier Capturing secondary fracture effects in triple porosity model Elsevier Secondary fracture intensity Elsevier Specialised rate-normalised pressure analysis plots Elsevier Uncertainty reduction in model output parameter Elsevier Dehghanpour, Hassan oth Enthalten in Elsevier Science Baccelli, Francois ELSEVIER Iterated Gilbert mosaics 2019 Amsterdam [u.a.] (DE-627)ELV008094314 volume:138 year:2016 pages:201-217 extent:17 https://doi.org/10.1016/j.petrol.2015.11.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 31.70 Wahrscheinlichkeitsrechnung VZ AR 138 2016 201-217 17 045F 660 |
spelling |
10.1016/j.petrol.2015.11.016 doi GBVA2016014000015.pica (DE-627)ELV024581364 (ELSEVIER)S0920-4105(15)30182-0 DE-627 ger DE-627 rakwb eng 660 660 DE-600 510 VZ 31.70 bkl Ezulike, Obinna Daniel verfasserin aut Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach 2016transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. Matrix/fracture permeability and volume Elsevier Hydraulic fracture half-length Elsevier Analysis equations from the quadrilinear flow model Elsevier Capturing secondary fracture effects in triple porosity model Elsevier Secondary fracture intensity Elsevier Specialised rate-normalised pressure analysis plots Elsevier Uncertainty reduction in model output parameter Elsevier Dehghanpour, Hassan oth Enthalten in Elsevier Science Baccelli, Francois ELSEVIER Iterated Gilbert mosaics 2019 Amsterdam [u.a.] (DE-627)ELV008094314 volume:138 year:2016 pages:201-217 extent:17 https://doi.org/10.1016/j.petrol.2015.11.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 31.70 Wahrscheinlichkeitsrechnung VZ AR 138 2016 201-217 17 045F 660 |
allfields_unstemmed |
10.1016/j.petrol.2015.11.016 doi GBVA2016014000015.pica (DE-627)ELV024581364 (ELSEVIER)S0920-4105(15)30182-0 DE-627 ger DE-627 rakwb eng 660 660 DE-600 510 VZ 31.70 bkl Ezulike, Obinna Daniel verfasserin aut Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach 2016transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. Matrix/fracture permeability and volume Elsevier Hydraulic fracture half-length Elsevier Analysis equations from the quadrilinear flow model Elsevier Capturing secondary fracture effects in triple porosity model Elsevier Secondary fracture intensity Elsevier Specialised rate-normalised pressure analysis plots Elsevier Uncertainty reduction in model output parameter Elsevier Dehghanpour, Hassan oth Enthalten in Elsevier Science Baccelli, Francois ELSEVIER Iterated Gilbert mosaics 2019 Amsterdam [u.a.] (DE-627)ELV008094314 volume:138 year:2016 pages:201-217 extent:17 https://doi.org/10.1016/j.petrol.2015.11.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 31.70 Wahrscheinlichkeitsrechnung VZ AR 138 2016 201-217 17 045F 660 |
allfieldsGer |
10.1016/j.petrol.2015.11.016 doi GBVA2016014000015.pica (DE-627)ELV024581364 (ELSEVIER)S0920-4105(15)30182-0 DE-627 ger DE-627 rakwb eng 660 660 DE-600 510 VZ 31.70 bkl Ezulike, Obinna Daniel verfasserin aut Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach 2016transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. Matrix/fracture permeability and volume Elsevier Hydraulic fracture half-length Elsevier Analysis equations from the quadrilinear flow model Elsevier Capturing secondary fracture effects in triple porosity model Elsevier Secondary fracture intensity Elsevier Specialised rate-normalised pressure analysis plots Elsevier Uncertainty reduction in model output parameter Elsevier Dehghanpour, Hassan oth Enthalten in Elsevier Science Baccelli, Francois ELSEVIER Iterated Gilbert mosaics 2019 Amsterdam [u.a.] (DE-627)ELV008094314 volume:138 year:2016 pages:201-217 extent:17 https://doi.org/10.1016/j.petrol.2015.11.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 31.70 Wahrscheinlichkeitsrechnung VZ AR 138 2016 201-217 17 045F 660 |
allfieldsSound |
10.1016/j.petrol.2015.11.016 doi GBVA2016014000015.pica (DE-627)ELV024581364 (ELSEVIER)S0920-4105(15)30182-0 DE-627 ger DE-627 rakwb eng 660 660 DE-600 510 VZ 31.70 bkl Ezulike, Obinna Daniel verfasserin aut Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach 2016transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. Matrix/fracture permeability and volume Elsevier Hydraulic fracture half-length Elsevier Analysis equations from the quadrilinear flow model Elsevier Capturing secondary fracture effects in triple porosity model Elsevier Secondary fracture intensity Elsevier Specialised rate-normalised pressure analysis plots Elsevier Uncertainty reduction in model output parameter Elsevier Dehghanpour, Hassan oth Enthalten in Elsevier Science Baccelli, Francois ELSEVIER Iterated Gilbert mosaics 2019 Amsterdam [u.a.] (DE-627)ELV008094314 volume:138 year:2016 pages:201-217 extent:17 https://doi.org/10.1016/j.petrol.2015.11.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 31.70 Wahrscheinlichkeitsrechnung VZ AR 138 2016 201-217 17 045F 660 |
language |
English |
source |
Enthalten in Iterated Gilbert mosaics Amsterdam [u.a.] volume:138 year:2016 pages:201-217 extent:17 |
sourceStr |
Enthalten in Iterated Gilbert mosaics Amsterdam [u.a.] volume:138 year:2016 pages:201-217 extent:17 |
format_phy_str_mv |
Article |
bklname |
Wahrscheinlichkeitsrechnung |
institution |
findex.gbv.de |
topic_facet |
Matrix/fracture permeability and volume Hydraulic fracture half-length Analysis equations from the quadrilinear flow model Capturing secondary fracture effects in triple porosity model Secondary fracture intensity Specialised rate-normalised pressure analysis plots Uncertainty reduction in model output parameter |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Iterated Gilbert mosaics |
authorswithroles_txt_mv |
Ezulike, Obinna Daniel @@aut@@ Dehghanpour, Hassan @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV008094314 |
dewey-sort |
3660 |
id |
ELV024581364 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024581364</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625143112.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.petrol.2015.11.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016014000015.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024581364</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0920-4105(15)30182-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ezulike, Obinna Daniel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrix/fracture permeability and volume</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydraulic fracture half-length</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analysis equations from the quadrilinear flow model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Capturing secondary fracture effects in triple porosity model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Secondary fracture intensity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Specialised rate-normalised pressure analysis plots</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Uncertainty reduction in model output parameter</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dehghanpour, Hassan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Baccelli, Francois ELSEVIER</subfield><subfield code="t">Iterated Gilbert mosaics</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008094314</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:138</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:201-217</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.petrol.2015.11.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.70</subfield><subfield code="j">Wahrscheinlichkeitsrechnung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">138</subfield><subfield code="j">2016</subfield><subfield code="h">201-217</subfield><subfield code="g">17</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
author |
Ezulike, Obinna Daniel |
spellingShingle |
Ezulike, Obinna Daniel ddc 660 ddc 510 bkl 31.70 Elsevier Matrix/fracture permeability and volume Elsevier Hydraulic fracture half-length Elsevier Analysis equations from the quadrilinear flow model Elsevier Capturing secondary fracture effects in triple porosity model Elsevier Secondary fracture intensity Elsevier Specialised rate-normalised pressure analysis plots Elsevier Uncertainty reduction in model output parameter Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach |
authorStr |
Ezulike, Obinna Daniel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008094314 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 660 DE-600 510 VZ 31.70 bkl Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach Matrix/fracture permeability and volume Elsevier Hydraulic fracture half-length Elsevier Analysis equations from the quadrilinear flow model Elsevier Capturing secondary fracture effects in triple porosity model Elsevier Secondary fracture intensity Elsevier Specialised rate-normalised pressure analysis plots Elsevier Uncertainty reduction in model output parameter Elsevier |
topic |
ddc 660 ddc 510 bkl 31.70 Elsevier Matrix/fracture permeability and volume Elsevier Hydraulic fracture half-length Elsevier Analysis equations from the quadrilinear flow model Elsevier Capturing secondary fracture effects in triple porosity model Elsevier Secondary fracture intensity Elsevier Specialised rate-normalised pressure analysis plots Elsevier Uncertainty reduction in model output parameter |
topic_unstemmed |
ddc 660 ddc 510 bkl 31.70 Elsevier Matrix/fracture permeability and volume Elsevier Hydraulic fracture half-length Elsevier Analysis equations from the quadrilinear flow model Elsevier Capturing secondary fracture effects in triple porosity model Elsevier Secondary fracture intensity Elsevier Specialised rate-normalised pressure analysis plots Elsevier Uncertainty reduction in model output parameter |
topic_browse |
ddc 660 ddc 510 bkl 31.70 Elsevier Matrix/fracture permeability and volume Elsevier Hydraulic fracture half-length Elsevier Analysis equations from the quadrilinear flow model Elsevier Capturing secondary fracture effects in triple porosity model Elsevier Secondary fracture intensity Elsevier Specialised rate-normalised pressure analysis plots Elsevier Uncertainty reduction in model output parameter |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h d hd |
hierarchy_parent_title |
Iterated Gilbert mosaics |
hierarchy_parent_id |
ELV008094314 |
dewey-tens |
660 - Chemical engineering 510 - Mathematics |
hierarchy_top_title |
Iterated Gilbert mosaics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008094314 |
title |
Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach |
ctrlnum |
(DE-627)ELV024581364 (ELSEVIER)S0920-4105(15)30182-0 |
title_full |
Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach |
author_sort |
Ezulike, Obinna Daniel |
journal |
Iterated Gilbert mosaics |
journalStr |
Iterated Gilbert mosaics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
201 |
author_browse |
Ezulike, Obinna Daniel |
container_volume |
138 |
physical |
17 |
class |
660 660 DE-600 510 VZ 31.70 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ezulike, Obinna Daniel |
doi_str_mv |
10.1016/j.petrol.2015.11.016 |
dewey-full |
660 510 |
title_sort |
capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: an uncertainty analysis approach |
title_auth |
Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach |
abstract |
Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. |
abstractGer |
Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. |
abstract_unstemmed |
Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT |
title_short |
Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach |
url |
https://doi.org/10.1016/j.petrol.2015.11.016 |
remote_bool |
true |
author2 |
Dehghanpour, Hassan |
author2Str |
Dehghanpour, Hassan |
ppnlink |
ELV008094314 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.petrol.2015.11.016 |
up_date |
2024-07-06T21:48:36.801Z |
_version_ |
1803867931857125376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024581364</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625143112.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.petrol.2015.11.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016014000015.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024581364</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0920-4105(15)30182-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ezulike, Obinna Daniel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capturing the effects of secondary fractures on production data using flow regime equations and specialised plots: An uncertainty analysis approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many fractured horizontal wells are completed in tight oil/gas or shale gas reservoirs which have significant networks of interconnected secondary fractures. However, the existing linear transient dual- and triple-porosity models do not properly account for secondary fractures. While the dual-porosity model assumes negligible secondary fractures, the linear sequential triple-porosity model assumes negligible fluid transfer between the rock matrix and hydraulic fractures. Hence, the application of these models for production data analysis of fractured horizontal wells could result in unreasonable reservoir/fracture parameter estimates and hydrocarbon forecast. For this reason, the quadrilinear flow model (QFM) was developed to account for matrix–hydraulic fracture communication. Although QFM properly accounts for the contribution of secondary fractures during reservoir depletion, reservoir parameter estimation from its type-curve matching procedure has a high degree of uncertainty. This paper proposes simplified QFM flow regime equations to reduce the uncertainty associated with reservoir parameter estimation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrix/fracture permeability and volume</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydraulic fracture half-length</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analysis equations from the quadrilinear flow model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Capturing secondary fracture effects in triple porosity model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Secondary fracture intensity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Specialised rate-normalised pressure analysis plots</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Uncertainty reduction in model output parameter</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dehghanpour, Hassan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Baccelli, Francois ELSEVIER</subfield><subfield code="t">Iterated Gilbert mosaics</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008094314</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:138</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:201-217</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.petrol.2015.11.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.70</subfield><subfield code="j">Wahrscheinlichkeitsrechnung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">138</subfield><subfield code="j">2016</subfield><subfield code="h">201-217</subfield><subfield code="g">17</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
score |
7.4011526 |