Legacy effects of soil moisture on microbial community structure and N2O emissions
Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, par...
Ausführliche Beschreibung
Autor*in: |
Banerjee, Samiran [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies - Viscusi, Gianluca ELSEVIER, 2022, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:95 ; year:2016 ; pages:40-50 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.soilbio.2015.12.004 |
---|
Katalog-ID: |
ELV024984744 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV024984744 | ||
003 | DE-627 | ||
005 | 20230625143954.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.soilbio.2015.12.004 |2 doi | |
028 | 5 | 2 | |a GBVA2016024000007.pica |
035 | |a (DE-627)ELV024984744 | ||
035 | |a (ELSEVIER)S0038-0717(15)00436-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 |a 540 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 540 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.18 |2 bkl | ||
084 | |a 33.68 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
084 | |a 58.20 |2 bkl | ||
100 | 1 | |a Banerjee, Samiran |e verfasserin |4 aut | |
245 | 1 | 0 | |a Legacy effects of soil moisture on microbial community structure and N2O emissions |
264 | 1 | |c 2016transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. | ||
520 | |a Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. | ||
650 | 7 | |a Microbial community composition |2 Elsevier | |
650 | 7 | |a Pyrosequencing |2 Elsevier | |
650 | 7 | |a Previous soil moisture |2 Elsevier | |
650 | 7 | |a Nitrous oxide |2 Elsevier | |
650 | 7 | |a Transcript abundance |2 Elsevier | |
700 | 1 | |a Helgason, Bobbi |4 oth | |
700 | 1 | |a Wang, Lianfeng |4 oth | |
700 | 1 | |a Winsley, Tristrom |4 oth | |
700 | 1 | |a Ferrari, Belinda C. |4 oth | |
700 | 1 | |a Siciliano, Steven D. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Viscusi, Gianluca ELSEVIER |t Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |d 2022 |g Amsterdam [u.a.] |w (DE-627)ELV007627629 |
773 | 1 | 8 | |g volume:95 |g year:2016 |g pages:40-50 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.soilbio.2015.12.004 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |q VZ |
936 | b | k | |a 33.68 |j Oberflächen |j Dünne Schichten |j Grenzflächen |x Physik |q VZ |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |q VZ |
936 | b | k | |a 58.20 |j Chemische Technologien: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 95 |j 2016 |h 40-50 |g 11 | ||
953 | |2 045F |a 570 |
author_variant |
s b sb |
---|---|
matchkey_str |
banerjeesamiranhelgasonbobbiwanglianfeng:2016----:eayfetosimitromcoilomntsr |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
35.18 33.68 52.78 58.20 |
publishDate |
2016 |
allfields |
10.1016/j.soilbio.2015.12.004 doi GBVA2016024000007.pica (DE-627)ELV024984744 (ELSEVIER)S0038-0717(15)00436-8 DE-627 ger DE-627 rakwb eng 570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Banerjee, Samiran verfasserin aut Legacy effects of soil moisture on microbial community structure and N2O emissions 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. Microbial community composition Elsevier Pyrosequencing Elsevier Previous soil moisture Elsevier Nitrous oxide Elsevier Transcript abundance Elsevier Helgason, Bobbi oth Wang, Lianfeng oth Winsley, Tristrom oth Ferrari, Belinda C. oth Siciliano, Steven D. oth Enthalten in Elsevier Science Viscusi, Gianluca ELSEVIER Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies 2022 Amsterdam [u.a.] (DE-627)ELV007627629 volume:95 year:2016 pages:40-50 extent:11 https://doi.org/10.1016/j.soilbio.2015.12.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.18 Kolloidchemie Grenzflächenchemie VZ 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 52.78 Oberflächentechnik Wärmebehandlung VZ 58.20 Chemische Technologien: Allgemeines VZ AR 95 2016 40-50 11 045F 570 |
spelling |
10.1016/j.soilbio.2015.12.004 doi GBVA2016024000007.pica (DE-627)ELV024984744 (ELSEVIER)S0038-0717(15)00436-8 DE-627 ger DE-627 rakwb eng 570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Banerjee, Samiran verfasserin aut Legacy effects of soil moisture on microbial community structure and N2O emissions 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. Microbial community composition Elsevier Pyrosequencing Elsevier Previous soil moisture Elsevier Nitrous oxide Elsevier Transcript abundance Elsevier Helgason, Bobbi oth Wang, Lianfeng oth Winsley, Tristrom oth Ferrari, Belinda C. oth Siciliano, Steven D. oth Enthalten in Elsevier Science Viscusi, Gianluca ELSEVIER Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies 2022 Amsterdam [u.a.] (DE-627)ELV007627629 volume:95 year:2016 pages:40-50 extent:11 https://doi.org/10.1016/j.soilbio.2015.12.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.18 Kolloidchemie Grenzflächenchemie VZ 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 52.78 Oberflächentechnik Wärmebehandlung VZ 58.20 Chemische Technologien: Allgemeines VZ AR 95 2016 40-50 11 045F 570 |
allfields_unstemmed |
10.1016/j.soilbio.2015.12.004 doi GBVA2016024000007.pica (DE-627)ELV024984744 (ELSEVIER)S0038-0717(15)00436-8 DE-627 ger DE-627 rakwb eng 570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Banerjee, Samiran verfasserin aut Legacy effects of soil moisture on microbial community structure and N2O emissions 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. Microbial community composition Elsevier Pyrosequencing Elsevier Previous soil moisture Elsevier Nitrous oxide Elsevier Transcript abundance Elsevier Helgason, Bobbi oth Wang, Lianfeng oth Winsley, Tristrom oth Ferrari, Belinda C. oth Siciliano, Steven D. oth Enthalten in Elsevier Science Viscusi, Gianluca ELSEVIER Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies 2022 Amsterdam [u.a.] (DE-627)ELV007627629 volume:95 year:2016 pages:40-50 extent:11 https://doi.org/10.1016/j.soilbio.2015.12.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.18 Kolloidchemie Grenzflächenchemie VZ 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 52.78 Oberflächentechnik Wärmebehandlung VZ 58.20 Chemische Technologien: Allgemeines VZ AR 95 2016 40-50 11 045F 570 |
allfieldsGer |
10.1016/j.soilbio.2015.12.004 doi GBVA2016024000007.pica (DE-627)ELV024984744 (ELSEVIER)S0038-0717(15)00436-8 DE-627 ger DE-627 rakwb eng 570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Banerjee, Samiran verfasserin aut Legacy effects of soil moisture on microbial community structure and N2O emissions 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. Microbial community composition Elsevier Pyrosequencing Elsevier Previous soil moisture Elsevier Nitrous oxide Elsevier Transcript abundance Elsevier Helgason, Bobbi oth Wang, Lianfeng oth Winsley, Tristrom oth Ferrari, Belinda C. oth Siciliano, Steven D. oth Enthalten in Elsevier Science Viscusi, Gianluca ELSEVIER Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies 2022 Amsterdam [u.a.] (DE-627)ELV007627629 volume:95 year:2016 pages:40-50 extent:11 https://doi.org/10.1016/j.soilbio.2015.12.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.18 Kolloidchemie Grenzflächenchemie VZ 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 52.78 Oberflächentechnik Wärmebehandlung VZ 58.20 Chemische Technologien: Allgemeines VZ AR 95 2016 40-50 11 045F 570 |
allfieldsSound |
10.1016/j.soilbio.2015.12.004 doi GBVA2016024000007.pica (DE-627)ELV024984744 (ELSEVIER)S0038-0717(15)00436-8 DE-627 ger DE-627 rakwb eng 570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Banerjee, Samiran verfasserin aut Legacy effects of soil moisture on microbial community structure and N2O emissions 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. Microbial community composition Elsevier Pyrosequencing Elsevier Previous soil moisture Elsevier Nitrous oxide Elsevier Transcript abundance Elsevier Helgason, Bobbi oth Wang, Lianfeng oth Winsley, Tristrom oth Ferrari, Belinda C. oth Siciliano, Steven D. oth Enthalten in Elsevier Science Viscusi, Gianluca ELSEVIER Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies 2022 Amsterdam [u.a.] (DE-627)ELV007627629 volume:95 year:2016 pages:40-50 extent:11 https://doi.org/10.1016/j.soilbio.2015.12.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.18 Kolloidchemie Grenzflächenchemie VZ 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 52.78 Oberflächentechnik Wärmebehandlung VZ 58.20 Chemische Technologien: Allgemeines VZ AR 95 2016 40-50 11 045F 570 |
language |
English |
source |
Enthalten in Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies Amsterdam [u.a.] volume:95 year:2016 pages:40-50 extent:11 |
sourceStr |
Enthalten in Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies Amsterdam [u.a.] volume:95 year:2016 pages:40-50 extent:11 |
format_phy_str_mv |
Article |
bklname |
Kolloidchemie Grenzflächenchemie Oberflächen Dünne Schichten Grenzflächen Oberflächentechnik Wärmebehandlung Chemische Technologien: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Microbial community composition Pyrosequencing Previous soil moisture Nitrous oxide Transcript abundance |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |
authorswithroles_txt_mv |
Banerjee, Samiran @@aut@@ Helgason, Bobbi @@oth@@ Wang, Lianfeng @@oth@@ Winsley, Tristrom @@oth@@ Ferrari, Belinda C. @@oth@@ Siciliano, Steven D. @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV007627629 |
dewey-sort |
3570 |
id |
ELV024984744 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024984744</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625143954.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.soilbio.2015.12.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016024000007.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024984744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-0717(15)00436-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Banerjee, Samiran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Legacy effects of soil moisture on microbial community structure and N2O emissions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microbial community composition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pyrosequencing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Previous soil moisture</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nitrous oxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transcript abundance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helgason, Bobbi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lianfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Winsley, Tristrom</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferrari, Belinda C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siciliano, Steven D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Viscusi, Gianluca ELSEVIER</subfield><subfield code="t">Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007627629</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:95</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:40-50</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.soilbio.2015.12.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.20</subfield><subfield code="j">Chemische Technologien: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">95</subfield><subfield code="j">2016</subfield><subfield code="h">40-50</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Banerjee, Samiran |
spellingShingle |
Banerjee, Samiran ddc 570 ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 Elsevier Microbial community composition Elsevier Pyrosequencing Elsevier Previous soil moisture Elsevier Nitrous oxide Elsevier Transcript abundance Legacy effects of soil moisture on microbial community structure and N2O emissions |
authorStr |
Banerjee, Samiran |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007627629 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Legacy effects of soil moisture on microbial community structure and N2O emissions Microbial community composition Elsevier Pyrosequencing Elsevier Previous soil moisture Elsevier Nitrous oxide Elsevier Transcript abundance Elsevier |
topic |
ddc 570 ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 Elsevier Microbial community composition Elsevier Pyrosequencing Elsevier Previous soil moisture Elsevier Nitrous oxide Elsevier Transcript abundance |
topic_unstemmed |
ddc 570 ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 Elsevier Microbial community composition Elsevier Pyrosequencing Elsevier Previous soil moisture Elsevier Nitrous oxide Elsevier Transcript abundance |
topic_browse |
ddc 570 ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 Elsevier Microbial community composition Elsevier Pyrosequencing Elsevier Previous soil moisture Elsevier Nitrous oxide Elsevier Transcript abundance |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
b h bh l w lw t w tw b c f bc bcf s d s sd sds |
hierarchy_parent_title |
Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |
hierarchy_parent_id |
ELV007627629 |
dewey-tens |
570 - Life sciences; biology 540 - Chemistry |
hierarchy_top_title |
Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007627629 |
title |
Legacy effects of soil moisture on microbial community structure and N2O emissions |
ctrlnum |
(DE-627)ELV024984744 (ELSEVIER)S0038-0717(15)00436-8 |
title_full |
Legacy effects of soil moisture on microbial community structure and N2O emissions |
author_sort |
Banerjee, Samiran |
journal |
Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |
journalStr |
Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
40 |
author_browse |
Banerjee, Samiran |
container_volume |
95 |
physical |
11 |
class |
570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Banerjee, Samiran |
doi_str_mv |
10.1016/j.soilbio.2015.12.004 |
dewey-full |
570 540 |
title_sort |
legacy effects of soil moisture on microbial community structure and n2o emissions |
title_auth |
Legacy effects of soil moisture on microbial community structure and N2O emissions |
abstract |
Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. |
abstractGer |
Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. |
abstract_unstemmed |
Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Legacy effects of soil moisture on microbial community structure and N2O emissions |
url |
https://doi.org/10.1016/j.soilbio.2015.12.004 |
remote_bool |
true |
author2 |
Helgason, Bobbi Wang, Lianfeng Winsley, Tristrom Ferrari, Belinda C. Siciliano, Steven D. |
author2Str |
Helgason, Bobbi Wang, Lianfeng Winsley, Tristrom Ferrari, Belinda C. Siciliano, Steven D. |
ppnlink |
ELV007627629 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.soilbio.2015.12.004 |
up_date |
2024-07-06T22:54:19.601Z |
_version_ |
1803872066184675328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024984744</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625143954.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.soilbio.2015.12.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016024000007.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024984744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-0717(15)00436-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Banerjee, Samiran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Legacy effects of soil moisture on microbial community structure and N2O emissions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Soil moisture is a strong determinant of microbial activity exerting dominant control over gaseous and liquid diffusion rates and affecting O2 and substrate availability. Often, measures of microbial community structure and soil moisture status fail to inform our understanding of soil processes, particularly those that are governed by complex feedbacks between substrate availability and environmental conditions (e.g. nitrogen transformations). Nitrous oxide (N2O) emissions, although conceptually regulated by soil moisture, are notoriously difficult to predict based on soil water content and nutrient status. Here, we studied agricultural soils under wetting, drying, and static moisture conditions to assess the impact of current and previous moisture on bacterial 16S rRNA composition; transcription of amoA, hao, norB, and nosZ; and net N2O production. Microbial community composition was dependent on previous moisture. As soils dried, bacterial rRNA contained fewer and more evenly distributed genera. We hypothesize that this was linked to the evenness of resource distribution as controlled by differences in substrate diffusion in wetting vs. drying conditions. N2O flux depended on previous, as well as current, soil moisture status and this legacy effect was greatest at 80% water filled pore space. Overall, we found that previous moisture affected microbial activity, transcription, composition and ultimately, N2O emissions. Our study demonstrates that, for soil microorganisms and processes, it is not only what soil moisture is, but also what it was that is important.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microbial community composition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pyrosequencing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Previous soil moisture</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nitrous oxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transcript abundance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helgason, Bobbi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lianfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Winsley, Tristrom</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferrari, Belinda C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siciliano, Steven D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Viscusi, Gianluca ELSEVIER</subfield><subfield code="t">Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007627629</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:95</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:40-50</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.soilbio.2015.12.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.20</subfield><subfield code="j">Chemische Technologien: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">95</subfield><subfield code="j">2016</subfield><subfield code="h">40-50</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.401078 |