Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil
Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients...
Ausführliche Beschreibung
Autor*in: |
Banerjee, Samiran [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies - Viscusi, Gianluca ELSEVIER, 2022, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:97 ; year:2016 ; pages:188-198 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.soilbio.2016.03.017 |
---|
Katalog-ID: |
ELV024985589 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV024985589 | ||
003 | DE-627 | ||
005 | 20230625143956.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.soilbio.2016.03.017 |2 doi | |
028 | 5 | 2 | |a GBVA2016024000007.pica |
035 | |a (DE-627)ELV024985589 | ||
035 | |a (ELSEVIER)S0038-0717(16)30026-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 |a 540 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 540 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.18 |2 bkl | ||
084 | |a 33.68 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
084 | |a 58.20 |2 bkl | ||
100 | 1 | |a Banerjee, Samiran |e verfasserin |4 aut | |
245 | 1 | 0 | |a Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil |
264 | 1 | |c 2016transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. | ||
520 | |a Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. | ||
650 | 7 | |a Organic matter |2 Elsevier | |
650 | 7 | |a Keystone taxa |2 Elsevier | |
650 | 7 | |a Network analysis |2 Elsevier | |
650 | 7 | |a Decomposition |2 Elsevier | |
650 | 7 | |a Co-occurrence |2 Elsevier | |
700 | 1 | |a Kirkby, Clive A. |4 oth | |
700 | 1 | |a Schmutter, Dione |4 oth | |
700 | 1 | |a Bissett, Andrew |4 oth | |
700 | 1 | |a Kirkegaard, John A. |4 oth | |
700 | 1 | |a Richardson, Alan E. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Viscusi, Gianluca ELSEVIER |t Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |d 2022 |g Amsterdam [u.a.] |w (DE-627)ELV007627629 |
773 | 1 | 8 | |g volume:97 |g year:2016 |g pages:188-198 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.soilbio.2016.03.017 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |q VZ |
936 | b | k | |a 33.68 |j Oberflächen |j Dünne Schichten |j Grenzflächen |x Physik |q VZ |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |q VZ |
936 | b | k | |a 58.20 |j Chemische Technologien: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 97 |j 2016 |h 188-198 |g 11 | ||
953 | |2 045F |a 570 |
author_variant |
s b sb |
---|---|
matchkey_str |
banerjeesamirankirkbycliveaschmutterdion:2016----:ewraayirvasucinleudnynkytntxaogtatraaduglomntedrnog |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
35.18 33.68 52.78 58.20 |
publishDate |
2016 |
allfields |
10.1016/j.soilbio.2016.03.017 doi GBVA2016024000007.pica (DE-627)ELV024985589 (ELSEVIER)S0038-0717(16)30026-8 DE-627 ger DE-627 rakwb eng 570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Banerjee, Samiran verfasserin aut Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. Organic matter Elsevier Keystone taxa Elsevier Network analysis Elsevier Decomposition Elsevier Co-occurrence Elsevier Kirkby, Clive A. oth Schmutter, Dione oth Bissett, Andrew oth Kirkegaard, John A. oth Richardson, Alan E. oth Enthalten in Elsevier Science Viscusi, Gianluca ELSEVIER Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies 2022 Amsterdam [u.a.] (DE-627)ELV007627629 volume:97 year:2016 pages:188-198 extent:11 https://doi.org/10.1016/j.soilbio.2016.03.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.18 Kolloidchemie Grenzflächenchemie VZ 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 52.78 Oberflächentechnik Wärmebehandlung VZ 58.20 Chemische Technologien: Allgemeines VZ AR 97 2016 188-198 11 045F 570 |
spelling |
10.1016/j.soilbio.2016.03.017 doi GBVA2016024000007.pica (DE-627)ELV024985589 (ELSEVIER)S0038-0717(16)30026-8 DE-627 ger DE-627 rakwb eng 570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Banerjee, Samiran verfasserin aut Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. Organic matter Elsevier Keystone taxa Elsevier Network analysis Elsevier Decomposition Elsevier Co-occurrence Elsevier Kirkby, Clive A. oth Schmutter, Dione oth Bissett, Andrew oth Kirkegaard, John A. oth Richardson, Alan E. oth Enthalten in Elsevier Science Viscusi, Gianluca ELSEVIER Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies 2022 Amsterdam [u.a.] (DE-627)ELV007627629 volume:97 year:2016 pages:188-198 extent:11 https://doi.org/10.1016/j.soilbio.2016.03.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.18 Kolloidchemie Grenzflächenchemie VZ 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 52.78 Oberflächentechnik Wärmebehandlung VZ 58.20 Chemische Technologien: Allgemeines VZ AR 97 2016 188-198 11 045F 570 |
allfields_unstemmed |
10.1016/j.soilbio.2016.03.017 doi GBVA2016024000007.pica (DE-627)ELV024985589 (ELSEVIER)S0038-0717(16)30026-8 DE-627 ger DE-627 rakwb eng 570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Banerjee, Samiran verfasserin aut Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. Organic matter Elsevier Keystone taxa Elsevier Network analysis Elsevier Decomposition Elsevier Co-occurrence Elsevier Kirkby, Clive A. oth Schmutter, Dione oth Bissett, Andrew oth Kirkegaard, John A. oth Richardson, Alan E. oth Enthalten in Elsevier Science Viscusi, Gianluca ELSEVIER Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies 2022 Amsterdam [u.a.] (DE-627)ELV007627629 volume:97 year:2016 pages:188-198 extent:11 https://doi.org/10.1016/j.soilbio.2016.03.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.18 Kolloidchemie Grenzflächenchemie VZ 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 52.78 Oberflächentechnik Wärmebehandlung VZ 58.20 Chemische Technologien: Allgemeines VZ AR 97 2016 188-198 11 045F 570 |
allfieldsGer |
10.1016/j.soilbio.2016.03.017 doi GBVA2016024000007.pica (DE-627)ELV024985589 (ELSEVIER)S0038-0717(16)30026-8 DE-627 ger DE-627 rakwb eng 570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Banerjee, Samiran verfasserin aut Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. Organic matter Elsevier Keystone taxa Elsevier Network analysis Elsevier Decomposition Elsevier Co-occurrence Elsevier Kirkby, Clive A. oth Schmutter, Dione oth Bissett, Andrew oth Kirkegaard, John A. oth Richardson, Alan E. oth Enthalten in Elsevier Science Viscusi, Gianluca ELSEVIER Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies 2022 Amsterdam [u.a.] (DE-627)ELV007627629 volume:97 year:2016 pages:188-198 extent:11 https://doi.org/10.1016/j.soilbio.2016.03.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.18 Kolloidchemie Grenzflächenchemie VZ 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 52.78 Oberflächentechnik Wärmebehandlung VZ 58.20 Chemische Technologien: Allgemeines VZ AR 97 2016 188-198 11 045F 570 |
allfieldsSound |
10.1016/j.soilbio.2016.03.017 doi GBVA2016024000007.pica (DE-627)ELV024985589 (ELSEVIER)S0038-0717(16)30026-8 DE-627 ger DE-627 rakwb eng 570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Banerjee, Samiran verfasserin aut Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. Organic matter Elsevier Keystone taxa Elsevier Network analysis Elsevier Decomposition Elsevier Co-occurrence Elsevier Kirkby, Clive A. oth Schmutter, Dione oth Bissett, Andrew oth Kirkegaard, John A. oth Richardson, Alan E. oth Enthalten in Elsevier Science Viscusi, Gianluca ELSEVIER Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies 2022 Amsterdam [u.a.] (DE-627)ELV007627629 volume:97 year:2016 pages:188-198 extent:11 https://doi.org/10.1016/j.soilbio.2016.03.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.18 Kolloidchemie Grenzflächenchemie VZ 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 52.78 Oberflächentechnik Wärmebehandlung VZ 58.20 Chemische Technologien: Allgemeines VZ AR 97 2016 188-198 11 045F 570 |
language |
English |
source |
Enthalten in Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies Amsterdam [u.a.] volume:97 year:2016 pages:188-198 extent:11 |
sourceStr |
Enthalten in Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies Amsterdam [u.a.] volume:97 year:2016 pages:188-198 extent:11 |
format_phy_str_mv |
Article |
bklname |
Kolloidchemie Grenzflächenchemie Oberflächen Dünne Schichten Grenzflächen Oberflächentechnik Wärmebehandlung Chemische Technologien: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Organic matter Keystone taxa Network analysis Decomposition Co-occurrence |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |
authorswithroles_txt_mv |
Banerjee, Samiran @@aut@@ Kirkby, Clive A. @@oth@@ Schmutter, Dione @@oth@@ Bissett, Andrew @@oth@@ Kirkegaard, John A. @@oth@@ Richardson, Alan E. @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV007627629 |
dewey-sort |
3570 |
id |
ELV024985589 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024985589</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625143956.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.soilbio.2016.03.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016024000007.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024985589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-0717(16)30026-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Banerjee, Samiran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Organic matter</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Keystone taxa</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Network analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Decomposition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Co-occurrence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirkby, Clive A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmutter, Dione</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bissett, Andrew</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirkegaard, John A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Richardson, Alan E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Viscusi, Gianluca ELSEVIER</subfield><subfield code="t">Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007627629</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:188-198</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.soilbio.2016.03.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.20</subfield><subfield code="j">Chemische Technologien: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2016</subfield><subfield code="h">188-198</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Banerjee, Samiran |
spellingShingle |
Banerjee, Samiran ddc 570 ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 Elsevier Organic matter Elsevier Keystone taxa Elsevier Network analysis Elsevier Decomposition Elsevier Co-occurrence Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil |
authorStr |
Banerjee, Samiran |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007627629 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil Organic matter Elsevier Keystone taxa Elsevier Network analysis Elsevier Decomposition Elsevier Co-occurrence Elsevier |
topic |
ddc 570 ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 Elsevier Organic matter Elsevier Keystone taxa Elsevier Network analysis Elsevier Decomposition Elsevier Co-occurrence |
topic_unstemmed |
ddc 570 ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 Elsevier Organic matter Elsevier Keystone taxa Elsevier Network analysis Elsevier Decomposition Elsevier Co-occurrence |
topic_browse |
ddc 570 ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 Elsevier Organic matter Elsevier Keystone taxa Elsevier Network analysis Elsevier Decomposition Elsevier Co-occurrence |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
c a k ca cak d s ds a b ab j a k ja jak a e r ae aer |
hierarchy_parent_title |
Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |
hierarchy_parent_id |
ELV007627629 |
dewey-tens |
570 - Life sciences; biology 540 - Chemistry |
hierarchy_top_title |
Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007627629 |
title |
Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil |
ctrlnum |
(DE-627)ELV024985589 (ELSEVIER)S0038-0717(16)30026-8 |
title_full |
Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil |
author_sort |
Banerjee, Samiran |
journal |
Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |
journalStr |
Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
188 |
author_browse |
Banerjee, Samiran |
container_volume |
97 |
physical |
11 |
class |
570 540 570 DE-600 540 DE-600 540 VZ 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Banerjee, Samiran |
doi_str_mv |
10.1016/j.soilbio.2016.03.017 |
dewey-full |
570 540 |
title_sort |
network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil |
title_auth |
Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil |
abstract |
Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. |
abstractGer |
Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. |
abstract_unstemmed |
Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil |
url |
https://doi.org/10.1016/j.soilbio.2016.03.017 |
remote_bool |
true |
author2 |
Kirkby, Clive A. Schmutter, Dione Bissett, Andrew Kirkegaard, John A. Richardson, Alan E. |
author2Str |
Kirkby, Clive A. Schmutter, Dione Bissett, Andrew Kirkegaard, John A. Richardson, Alan E. |
ppnlink |
ELV007627629 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.soilbio.2016.03.017 |
up_date |
2024-07-06T22:54:31.444Z |
_version_ |
1803872078602960896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV024985589</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625143956.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.soilbio.2016.03.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016024000007.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV024985589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-0717(16)30026-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Banerjee, Samiran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Organic matter (OM) decomposition and breakdown of crop residues are directly linked to carbon (C) sequestration in agricultural soils as a portion of the decomposed C becomes assimilated into stable microbial biomass. Microbial decomposition of OM may vary with quality of OM, addition of nutrients and functional types of microbes. While the role of fungi and bacteria in OM decomposition has received considerable attention, the succession and co-occurrence patterns of these communities during decomposition remain unexplored. Using 454 pyrosequencing and network analysis of bacterial 16S rRNA and fungal ITS genes in a time-course microcosm experiment, this study shows a positive effect of nutrient addition on overall microbial biomass and abundance of bacteria and fungi. Abundance of different bacterial and fungal groups changed up to 300-folds under straw- and nutrient amended treatments while the rate of decomposition remained similar, indicating a possible functional redundancy. Moreover, addition of nutrients significantly altered the co-occurrence patterns of fungal and bacterial communities, and these patterns were resource-driven and not phylogeny-driven. Richness, evenness and diversity decreased and were negatively associated with decomposition rate. Acidobacteria, Frateuria and Gemmatimonas in bacteria and Chaetomium, Cephalotheca and Fusarium in fungi were found as the keystone taxa. These taxa showed strong positive associations with decomposition, indicating their importance in C turnover. Overall, we show that addition of nutrients reduces diversity but favours the keystone taxa, and thereby increases microbial biomass.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Organic matter</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Keystone taxa</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Network analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Decomposition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Co-occurrence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirkby, Clive A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmutter, Dione</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bissett, Andrew</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirkegaard, John A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Richardson, Alan E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Viscusi, Gianluca ELSEVIER</subfield><subfield code="t">Fabrication of novel hybrid materials based on iron-aluminum modified hemp fibers: Comparison between two proposed methodologies</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007627629</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:188-198</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.soilbio.2016.03.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.20</subfield><subfield code="j">Chemische Technologien: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2016</subfield><subfield code="h">188-198</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.4006395 |