Convergence rate results for steepest descent type method for nonlinear ill-posed equations
Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy...
Ausführliche Beschreibung
Autor*in: |
George, Santhosh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Systematik: |
|
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation - Moreira, Zeus S. ELSEVIER, 2021, New York, NY |
---|---|
Übergeordnetes Werk: |
volume:294 ; year:2017 ; day:1 ; month:02 ; pages:169-179 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.amc.2016.09.009 |
---|
Katalog-ID: |
ELV025017438 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV025017438 | ||
003 | DE-627 | ||
005 | 20230625144039.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.amc.2016.09.009 |2 doi | |
028 | 5 | 2 | |a GBVA2017002000004.pica |
035 | |a (DE-627)ELV025017438 | ||
035 | |a (ELSEVIER)S0096-3003(16)30569-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 1000 |q VZ |2 rvk |0 (DE-625)rvk/145215: | ||
084 | |a 33.40 |2 bkl | ||
084 | |a 33.50 |2 bkl | ||
084 | |a 39.22 |2 bkl | ||
100 | 1 | |a George, Santhosh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Convergence rate results for steepest descent type method for nonlinear ill-posed equations |
264 | 1 | |c 2017transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. | ||
520 | |a Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. | ||
700 | 1 | |a Sabari, M. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Moreira, Zeus S. ELSEVIER |t Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |d 2021 |g New York, NY |w (DE-627)ELV006733727 |
773 | 1 | 8 | |g volume:294 |g year:2017 |g day:1 |g month:02 |g pages:169-179 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.amc.2016.09.009 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OPC-AST | ||
936 | r | v | |a UA 1000 |b Referateblätter und Zeitschriften |k Physik |k Referateblätter und Zeitschriften |0 (DE-625)rvk/145215: |0 (DE-576)329175343 |
936 | b | k | |a 33.40 |j Kernphysik |q VZ |
936 | b | k | |a 33.50 |j Physik der Elementarteilchen und Felder: Allgemeines |q VZ |
936 | b | k | |a 39.22 |j Astrophysik |q VZ |
951 | |a AR | ||
952 | |d 294 |j 2017 |b 1 |c 0201 |h 169-179 |g 11 | ||
953 | |2 045F |a 510 |
author_variant |
s g sg |
---|---|
matchkey_str |
georgesanthoshsabarim:2017----:ovrecrtrslsosepsdsetyeehdonn |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
33.40 33.50 39.22 |
publishDate |
2017 |
allfields |
10.1016/j.amc.2016.09.009 doi GBVA2017002000004.pica (DE-627)ELV025017438 (ELSEVIER)S0096-3003(16)30569-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl George, Santhosh verfasserin aut Convergence rate results for steepest descent type method for nonlinear ill-posed equations 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. Sabari, M. oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:294 year:2017 day:1 month:02 pages:169-179 extent:11 https://doi.org/10.1016/j.amc.2016.09.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 294 2017 1 0201 169-179 11 045F 510 |
spelling |
10.1016/j.amc.2016.09.009 doi GBVA2017002000004.pica (DE-627)ELV025017438 (ELSEVIER)S0096-3003(16)30569-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl George, Santhosh verfasserin aut Convergence rate results for steepest descent type method for nonlinear ill-posed equations 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. Sabari, M. oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:294 year:2017 day:1 month:02 pages:169-179 extent:11 https://doi.org/10.1016/j.amc.2016.09.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 294 2017 1 0201 169-179 11 045F 510 |
allfields_unstemmed |
10.1016/j.amc.2016.09.009 doi GBVA2017002000004.pica (DE-627)ELV025017438 (ELSEVIER)S0096-3003(16)30569-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl George, Santhosh verfasserin aut Convergence rate results for steepest descent type method for nonlinear ill-posed equations 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. Sabari, M. oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:294 year:2017 day:1 month:02 pages:169-179 extent:11 https://doi.org/10.1016/j.amc.2016.09.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 294 2017 1 0201 169-179 11 045F 510 |
allfieldsGer |
10.1016/j.amc.2016.09.009 doi GBVA2017002000004.pica (DE-627)ELV025017438 (ELSEVIER)S0096-3003(16)30569-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl George, Santhosh verfasserin aut Convergence rate results for steepest descent type method for nonlinear ill-posed equations 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. Sabari, M. oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:294 year:2017 day:1 month:02 pages:169-179 extent:11 https://doi.org/10.1016/j.amc.2016.09.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 294 2017 1 0201 169-179 11 045F 510 |
allfieldsSound |
10.1016/j.amc.2016.09.009 doi GBVA2017002000004.pica (DE-627)ELV025017438 (ELSEVIER)S0096-3003(16)30569-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl George, Santhosh verfasserin aut Convergence rate results for steepest descent type method for nonlinear ill-posed equations 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. Sabari, M. oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:294 year:2017 day:1 month:02 pages:169-179 extent:11 https://doi.org/10.1016/j.amc.2016.09.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 294 2017 1 0201 169-179 11 045F 510 |
language |
English |
source |
Enthalten in Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation New York, NY volume:294 year:2017 day:1 month:02 pages:169-179 extent:11 |
sourceStr |
Enthalten in Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation New York, NY volume:294 year:2017 day:1 month:02 pages:169-179 extent:11 |
format_phy_str_mv |
Article |
bklname |
Kernphysik Physik der Elementarteilchen und Felder: Allgemeines Astrophysik |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
authorswithroles_txt_mv |
George, Santhosh @@aut@@ Sabari, M. @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV006733727 |
dewey-sort |
3510 |
id |
ELV025017438 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025017438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625144039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.amc.2016.09.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017002000004.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025017438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0096-3003(16)30569-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/145215:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">George, Santhosh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convergence rate results for steepest descent type method for nonlinear ill-posed equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sabari, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Moreira, Zeus S. ELSEVIER</subfield><subfield code="t">Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation</subfield><subfield code="d">2021</subfield><subfield code="g">New York, NY</subfield><subfield code="w">(DE-627)ELV006733727</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:294</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:169-179</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.amc.2016.09.009</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield><subfield code="b">Referateblätter und Zeitschriften</subfield><subfield code="k">Physik</subfield><subfield code="k">Referateblätter und Zeitschriften</subfield><subfield code="0">(DE-625)rvk/145215:</subfield><subfield code="0">(DE-576)329175343</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.50</subfield><subfield code="j">Physik der Elementarteilchen und Felder: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.22</subfield><subfield code="j">Astrophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">294</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0201</subfield><subfield code="h">169-179</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
George, Santhosh |
spellingShingle |
George, Santhosh ddc 510 ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 Convergence rate results for steepest descent type method for nonlinear ill-posed equations |
authorStr |
George, Santhosh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006733727 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215 33.40 bkl 33.50 bkl 39.22 bkl Convergence rate results for steepest descent type method for nonlinear ill-posed equations |
topic |
ddc 510 ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 |
topic_unstemmed |
ddc 510 ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 |
topic_browse |
ddc 510 ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m s ms |
hierarchy_parent_title |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
hierarchy_parent_id |
ELV006733727 |
dewey-tens |
510 - Mathematics 530 - Physics |
hierarchy_top_title |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006733727 |
title |
Convergence rate results for steepest descent type method for nonlinear ill-posed equations |
ctrlnum |
(DE-627)ELV025017438 (ELSEVIER)S0096-3003(16)30569-0 |
title_full |
Convergence rate results for steepest descent type method for nonlinear ill-posed equations |
author_sort |
George, Santhosh |
journal |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
journalStr |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
169 |
author_browse |
George, Santhosh |
container_volume |
294 |
physical |
11 |
class |
510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215 33.40 bkl 33.50 bkl 39.22 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
George, Santhosh |
doi_str_mv |
10.1016/j.amc.2016.09.009 |
normlink |
RVK/145215: 329175343 |
normlink_prefix_str_mv |
(DE-625)rvk/145215: (DE-576)329175343 |
dewey-full |
510 530 |
title_sort |
convergence rate results for steepest descent type method for nonlinear ill-posed equations |
title_auth |
Convergence rate results for steepest descent type method for nonlinear ill-posed equations |
abstract |
Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. |
abstractGer |
Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. |
abstract_unstemmed |
Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST |
title_short |
Convergence rate results for steepest descent type method for nonlinear ill-posed equations |
url |
https://doi.org/10.1016/j.amc.2016.09.009 |
remote_bool |
true |
author2 |
Sabari, M. |
author2Str |
Sabari, M. |
ppnlink |
ELV006733727 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.amc.2016.09.009 |
up_date |
2024-07-06T22:59:46.598Z |
_version_ |
1803872409065881600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025017438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625144039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.amc.2016.09.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017002000004.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025017438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0096-3003(16)30569-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/145215:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">George, Santhosh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convergence rate results for steepest descent type method for nonlinear ill-posed equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sabari, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Moreira, Zeus S. ELSEVIER</subfield><subfield code="t">Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation</subfield><subfield code="d">2021</subfield><subfield code="g">New York, NY</subfield><subfield code="w">(DE-627)ELV006733727</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:294</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:169-179</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.amc.2016.09.009</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield><subfield code="b">Referateblätter und Zeitschriften</subfield><subfield code="k">Physik</subfield><subfield code="k">Referateblätter und Zeitschriften</subfield><subfield code="0">(DE-625)rvk/145215:</subfield><subfield code="0">(DE-576)329175343</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.50</subfield><subfield code="j">Physik der Elementarteilchen und Felder: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.22</subfield><subfield code="j">Astrophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">294</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0201</subfield><subfield code="h">169-179</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.4010687 |