A novel transparent charged particle detector for the CPET upgrade at TITAN
The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light...
Ausführliche Beschreibung
Autor*in: |
Lascar, D. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol - Ide, C.V. ELSEVIER, 2017, a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:868 ; year:2017 ; day:1 ; month:10 ; pages:133-138 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.nima.2017.07.003 |
---|
Katalog-ID: |
ELV025148532 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV025148532 | ||
003 | DE-627 | ||
005 | 20230625144313.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nima.2017.07.003 |2 doi | |
028 | 5 | 2 | |a GBV00000000000278A.pica |
035 | |a (DE-627)ELV025148532 | ||
035 | |a (ELSEVIER)S0168-9002(17)30714-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Lascar, D. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A novel transparent charged particle detector for the CPET upgrade at TITAN |
264 | 1 | |c 2017transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. | ||
520 | |a The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. | ||
650 | 7 | |a Photochemical machining |2 Elsevier | |
650 | 7 | |a Ion trapping |2 Elsevier | |
650 | 7 | |a Detectors |2 Elsevier | |
650 | 7 | |a Penning trap |2 Elsevier | |
650 | 7 | |a Ion cooling |2 Elsevier | |
650 | 7 | |a HCI |2 Elsevier | |
700 | 1 | |a Kootte, B. |4 oth | |
700 | 1 | |a Barquest, B.R. |4 oth | |
700 | 1 | |a Chowdhury, U. |4 oth | |
700 | 1 | |a Gallant, A.T. |4 oth | |
700 | 1 | |a Good, M. |4 oth | |
700 | 1 | |a Klawitter, R. |4 oth | |
700 | 1 | |a Leistenschneider, E. |4 oth | |
700 | 1 | |a Andreoiu, C. |4 oth | |
700 | 1 | |a Dilling, J. |4 oth | |
700 | 1 | |a Even, J. |4 oth | |
700 | 1 | |a Gwinner, G. |4 oth | |
700 | 1 | |a Kwiatkowski, A.A. |4 oth | |
700 | 1 | |a Leach, K.G. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North-Holland Publ. Co |a Ide, C.V. ELSEVIER |t The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |d 2017 |d a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics |g Amsterdam |w (DE-627)ELV000874671 |
773 | 1 | 8 | |g volume:868 |g year:2017 |g day:1 |g month:10 |g pages:133-138 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nima.2017.07.003 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.90 |j Neurologie |q VZ |
951 | |a AR | ||
952 | |d 868 |j 2017 |b 1 |c 1001 |h 133-138 |g 6 | ||
953 | |2 045F |a 530 |
author_variant |
d l dl |
---|---|
matchkey_str |
lascardkoottebbarquestbrchowdhuryugallan:2017----:nvlrnprncagdatceeetrotep |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
44.90 |
publishDate |
2017 |
allfields |
10.1016/j.nima.2017.07.003 doi GBV00000000000278A.pica (DE-627)ELV025148532 (ELSEVIER)S0168-9002(17)30714-3 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Lascar, D. verfasserin aut A novel transparent charged particle detector for the CPET upgrade at TITAN 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. Photochemical machining Elsevier Ion trapping Elsevier Detectors Elsevier Penning trap Elsevier Ion cooling Elsevier HCI Elsevier Kootte, B. oth Barquest, B.R. oth Chowdhury, U. oth Gallant, A.T. oth Good, M. oth Klawitter, R. oth Leistenschneider, E. oth Andreoiu, C. oth Dilling, J. oth Even, J. oth Gwinner, G. oth Kwiatkowski, A.A. oth Leach, K.G. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:868 year:2017 day:1 month:10 pages:133-138 extent:6 https://doi.org/10.1016/j.nima.2017.07.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 868 2017 1 1001 133-138 6 045F 530 |
spelling |
10.1016/j.nima.2017.07.003 doi GBV00000000000278A.pica (DE-627)ELV025148532 (ELSEVIER)S0168-9002(17)30714-3 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Lascar, D. verfasserin aut A novel transparent charged particle detector for the CPET upgrade at TITAN 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. Photochemical machining Elsevier Ion trapping Elsevier Detectors Elsevier Penning trap Elsevier Ion cooling Elsevier HCI Elsevier Kootte, B. oth Barquest, B.R. oth Chowdhury, U. oth Gallant, A.T. oth Good, M. oth Klawitter, R. oth Leistenschneider, E. oth Andreoiu, C. oth Dilling, J. oth Even, J. oth Gwinner, G. oth Kwiatkowski, A.A. oth Leach, K.G. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:868 year:2017 day:1 month:10 pages:133-138 extent:6 https://doi.org/10.1016/j.nima.2017.07.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 868 2017 1 1001 133-138 6 045F 530 |
allfields_unstemmed |
10.1016/j.nima.2017.07.003 doi GBV00000000000278A.pica (DE-627)ELV025148532 (ELSEVIER)S0168-9002(17)30714-3 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Lascar, D. verfasserin aut A novel transparent charged particle detector for the CPET upgrade at TITAN 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. Photochemical machining Elsevier Ion trapping Elsevier Detectors Elsevier Penning trap Elsevier Ion cooling Elsevier HCI Elsevier Kootte, B. oth Barquest, B.R. oth Chowdhury, U. oth Gallant, A.T. oth Good, M. oth Klawitter, R. oth Leistenschneider, E. oth Andreoiu, C. oth Dilling, J. oth Even, J. oth Gwinner, G. oth Kwiatkowski, A.A. oth Leach, K.G. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:868 year:2017 day:1 month:10 pages:133-138 extent:6 https://doi.org/10.1016/j.nima.2017.07.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 868 2017 1 1001 133-138 6 045F 530 |
allfieldsGer |
10.1016/j.nima.2017.07.003 doi GBV00000000000278A.pica (DE-627)ELV025148532 (ELSEVIER)S0168-9002(17)30714-3 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Lascar, D. verfasserin aut A novel transparent charged particle detector for the CPET upgrade at TITAN 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. Photochemical machining Elsevier Ion trapping Elsevier Detectors Elsevier Penning trap Elsevier Ion cooling Elsevier HCI Elsevier Kootte, B. oth Barquest, B.R. oth Chowdhury, U. oth Gallant, A.T. oth Good, M. oth Klawitter, R. oth Leistenschneider, E. oth Andreoiu, C. oth Dilling, J. oth Even, J. oth Gwinner, G. oth Kwiatkowski, A.A. oth Leach, K.G. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:868 year:2017 day:1 month:10 pages:133-138 extent:6 https://doi.org/10.1016/j.nima.2017.07.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 868 2017 1 1001 133-138 6 045F 530 |
allfieldsSound |
10.1016/j.nima.2017.07.003 doi GBV00000000000278A.pica (DE-627)ELV025148532 (ELSEVIER)S0168-9002(17)30714-3 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Lascar, D. verfasserin aut A novel transparent charged particle detector for the CPET upgrade at TITAN 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. Photochemical machining Elsevier Ion trapping Elsevier Detectors Elsevier Penning trap Elsevier Ion cooling Elsevier HCI Elsevier Kootte, B. oth Barquest, B.R. oth Chowdhury, U. oth Gallant, A.T. oth Good, M. oth Klawitter, R. oth Leistenschneider, E. oth Andreoiu, C. oth Dilling, J. oth Even, J. oth Gwinner, G. oth Kwiatkowski, A.A. oth Leach, K.G. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:868 year:2017 day:1 month:10 pages:133-138 extent:6 https://doi.org/10.1016/j.nima.2017.07.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 868 2017 1 1001 133-138 6 045F 530 |
language |
English |
source |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:868 year:2017 day:1 month:10 pages:133-138 extent:6 |
sourceStr |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:868 year:2017 day:1 month:10 pages:133-138 extent:6 |
format_phy_str_mv |
Article |
bklname |
Neurologie |
institution |
findex.gbv.de |
topic_facet |
Photochemical machining Ion trapping Detectors Penning trap Ion cooling HCI |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
authorswithroles_txt_mv |
Lascar, D. @@aut@@ Kootte, B. @@oth@@ Barquest, B.R. @@oth@@ Chowdhury, U. @@oth@@ Gallant, A.T. @@oth@@ Good, M. @@oth@@ Klawitter, R. @@oth@@ Leistenschneider, E. @@oth@@ Andreoiu, C. @@oth@@ Dilling, J. @@oth@@ Even, J. @@oth@@ Gwinner, G. @@oth@@ Kwiatkowski, A.A. @@oth@@ Leach, K.G. @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV000874671 |
dewey-sort |
3530 |
id |
ELV025148532 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025148532</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625144313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2017.07.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000278A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025148532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(17)30714-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lascar, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel transparent charged particle detector for the CPET upgrade at TITAN</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Photochemical machining</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ion trapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Detectors</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Penning trap</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ion cooling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HCI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kootte, B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barquest, B.R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chowdhury, U.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gallant, A.T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Good, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klawitter, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leistenschneider, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andreoiu, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dilling, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Even, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gwinner, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwiatkowski, A.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leach, K.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:868</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:133-138</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2017.07.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">868</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">133-138</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Lascar, D. |
spellingShingle |
Lascar, D. ddc 530 ddc 610 bkl 44.90 Elsevier Photochemical machining Elsevier Ion trapping Elsevier Detectors Elsevier Penning trap Elsevier Ion cooling Elsevier HCI A novel transparent charged particle detector for the CPET upgrade at TITAN |
authorStr |
Lascar, D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000874671 |
format |
electronic Article |
dewey-ones |
530 - Physics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 610 VZ 44.90 bkl A novel transparent charged particle detector for the CPET upgrade at TITAN Photochemical machining Elsevier Ion trapping Elsevier Detectors Elsevier Penning trap Elsevier Ion cooling Elsevier HCI Elsevier |
topic |
ddc 530 ddc 610 bkl 44.90 Elsevier Photochemical machining Elsevier Ion trapping Elsevier Detectors Elsevier Penning trap Elsevier Ion cooling Elsevier HCI |
topic_unstemmed |
ddc 530 ddc 610 bkl 44.90 Elsevier Photochemical machining Elsevier Ion trapping Elsevier Detectors Elsevier Penning trap Elsevier Ion cooling Elsevier HCI |
topic_browse |
ddc 530 ddc 610 bkl 44.90 Elsevier Photochemical machining Elsevier Ion trapping Elsevier Detectors Elsevier Penning trap Elsevier Ion cooling Elsevier HCI |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
b k bk b b bb u c uc a g ag m g mg r k rk e l el c a ca j d jd j e je g g gg a k ak k l kl |
hierarchy_parent_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
hierarchy_parent_id |
ELV000874671 |
dewey-tens |
530 - Physics 610 - Medicine & health |
hierarchy_top_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000874671 |
title |
A novel transparent charged particle detector for the CPET upgrade at TITAN |
ctrlnum |
(DE-627)ELV025148532 (ELSEVIER)S0168-9002(17)30714-3 |
title_full |
A novel transparent charged particle detector for the CPET upgrade at TITAN |
author_sort |
Lascar, D. |
journal |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
journalStr |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
133 |
author_browse |
Lascar, D. |
container_volume |
868 |
physical |
6 |
class |
530 530 DE-600 610 VZ 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Lascar, D. |
doi_str_mv |
10.1016/j.nima.2017.07.003 |
dewey-full |
530 610 |
title_sort |
a novel transparent charged particle detector for the cpet upgrade at titan |
title_auth |
A novel transparent charged particle detector for the CPET upgrade at TITAN |
abstract |
The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. |
abstractGer |
The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. |
abstract_unstemmed |
The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
A novel transparent charged particle detector for the CPET upgrade at TITAN |
url |
https://doi.org/10.1016/j.nima.2017.07.003 |
remote_bool |
true |
author2 |
Kootte, B. Barquest, B.R. Chowdhury, U. Gallant, A.T. Good, M. Klawitter, R. Leistenschneider, E. Andreoiu, C. Dilling, J. Even, J. Gwinner, G. Kwiatkowski, A.A. Leach, K.G. |
author2Str |
Kootte, B. Barquest, B.R. Chowdhury, U. Gallant, A.T. Good, M. Klawitter, R. Leistenschneider, E. Andreoiu, C. Dilling, J. Even, J. Gwinner, G. Kwiatkowski, A.A. Leach, K.G. |
ppnlink |
ELV000874671 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.nima.2017.07.003 |
up_date |
2024-07-06T16:49:21.989Z |
_version_ |
1803849104876371968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025148532</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625144313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2017.07.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000278A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025148532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(17)30714-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lascar, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel transparent charged particle detector for the CPET upgrade at TITAN</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid’s entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the “mesh detector.” The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user’s discretion.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Photochemical machining</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ion trapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Detectors</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Penning trap</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ion cooling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HCI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kootte, B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barquest, B.R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chowdhury, U.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gallant, A.T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Good, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klawitter, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leistenschneider, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andreoiu, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dilling, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Even, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gwinner, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwiatkowski, A.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leach, K.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:868</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:133-138</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2017.07.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">868</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">133-138</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.4010544 |