Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures
Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control g...
Ausführliche Beschreibung
Autor*in: |
Prusty, Rajesh Kumar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
A. Polymer-matrix composites (PMCs) |
---|
Umfang: |
12 |
---|
Übergeordnetes Werk: |
Enthalten in: Newsletter EPNS September 2013 - 2013, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:101 ; year:2017 ; pages:215-226 ; extent:12 |
Links: |
---|
DOI / URN: |
10.1016/j.compositesa.2017.06.020 |
---|
Katalog-ID: |
ELV025570234 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV025570234 | ||
003 | DE-627 | ||
005 | 20230625144936.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compositesa.2017.06.020 |2 doi | |
028 | 5 | 2 | |a GBV00000000000378.pica |
035 | |a (DE-627)ELV025570234 | ||
035 | |a (ELSEVIER)S1359-835X(17)30245-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 580 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.00 |2 bkl | ||
100 | 1 | |a Prusty, Rajesh Kumar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures |
264 | 1 | |c 2017transfer abstract | |
300 | |a 12 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. | ||
520 | |a Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. | ||
650 | 7 | |a A. Polymer-matrix composites (PMCs) |2 Elsevier | |
650 | 7 | |a A. Carbon nanotubes and nanofibers |2 Elsevier | |
650 | 7 | |a D. Mechanical testing |2 Elsevier | |
650 | 7 | |a B. Interface/interphase |2 Elsevier | |
700 | 1 | |a Rathore, Dinesh Kumar |4 oth | |
700 | 1 | |a Ray, Bankim Chandra |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |t Newsletter EPNS September 2013 |d 2013 |g Amsterdam [u.a.] |w (DE-627)ELV011781912 |
773 | 1 | 8 | |g volume:101 |g year:2017 |g pages:215-226 |g extent:12 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.compositesa.2017.06.020 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_131 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2037 | ||
936 | b | k | |a 42.00 |j Biologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 101 |j 2017 |h 215-226 |g 12 |
author_variant |
r k p rk rkp |
---|---|
matchkey_str |
prustyrajeshkumarrathoredineshkumarrayba:2017----:vlainfhrlofntoaiectnlsfbrpxcmoietbvaduzrtmeaueep |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
42.00 |
publishDate |
2017 |
allfields |
10.1016/j.compositesa.2017.06.020 doi GBV00000000000378.pica (DE-627)ELV025570234 (ELSEVIER)S1359-835X(17)30245-2 DE-627 ger DE-627 rakwb eng 610 VZ 580 540 VZ BIODIV DE-30 fid 42.00 bkl Prusty, Rajesh Kumar verfasserin aut Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures 2017transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. A. Polymer-matrix composites (PMCs) Elsevier A. Carbon nanotubes and nanofibers Elsevier D. Mechanical testing Elsevier B. Interface/interphase Elsevier Rathore, Dinesh Kumar oth Ray, Bankim Chandra oth Enthalten in Elsevier Newsletter EPNS September 2013 2013 Amsterdam [u.a.] (DE-627)ELV011781912 volume:101 year:2017 pages:215-226 extent:12 https://doi.org/10.1016/j.compositesa.2017.06.020 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_120 GBV_ILN_131 GBV_ILN_2008 GBV_ILN_2018 GBV_ILN_2037 42.00 Biologie: Allgemeines VZ AR 101 2017 215-226 12 |
spelling |
10.1016/j.compositesa.2017.06.020 doi GBV00000000000378.pica (DE-627)ELV025570234 (ELSEVIER)S1359-835X(17)30245-2 DE-627 ger DE-627 rakwb eng 610 VZ 580 540 VZ BIODIV DE-30 fid 42.00 bkl Prusty, Rajesh Kumar verfasserin aut Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures 2017transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. A. Polymer-matrix composites (PMCs) Elsevier A. Carbon nanotubes and nanofibers Elsevier D. Mechanical testing Elsevier B. Interface/interphase Elsevier Rathore, Dinesh Kumar oth Ray, Bankim Chandra oth Enthalten in Elsevier Newsletter EPNS September 2013 2013 Amsterdam [u.a.] (DE-627)ELV011781912 volume:101 year:2017 pages:215-226 extent:12 https://doi.org/10.1016/j.compositesa.2017.06.020 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_120 GBV_ILN_131 GBV_ILN_2008 GBV_ILN_2018 GBV_ILN_2037 42.00 Biologie: Allgemeines VZ AR 101 2017 215-226 12 |
allfields_unstemmed |
10.1016/j.compositesa.2017.06.020 doi GBV00000000000378.pica (DE-627)ELV025570234 (ELSEVIER)S1359-835X(17)30245-2 DE-627 ger DE-627 rakwb eng 610 VZ 580 540 VZ BIODIV DE-30 fid 42.00 bkl Prusty, Rajesh Kumar verfasserin aut Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures 2017transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. A. Polymer-matrix composites (PMCs) Elsevier A. Carbon nanotubes and nanofibers Elsevier D. Mechanical testing Elsevier B. Interface/interphase Elsevier Rathore, Dinesh Kumar oth Ray, Bankim Chandra oth Enthalten in Elsevier Newsletter EPNS September 2013 2013 Amsterdam [u.a.] (DE-627)ELV011781912 volume:101 year:2017 pages:215-226 extent:12 https://doi.org/10.1016/j.compositesa.2017.06.020 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_120 GBV_ILN_131 GBV_ILN_2008 GBV_ILN_2018 GBV_ILN_2037 42.00 Biologie: Allgemeines VZ AR 101 2017 215-226 12 |
allfieldsGer |
10.1016/j.compositesa.2017.06.020 doi GBV00000000000378.pica (DE-627)ELV025570234 (ELSEVIER)S1359-835X(17)30245-2 DE-627 ger DE-627 rakwb eng 610 VZ 580 540 VZ BIODIV DE-30 fid 42.00 bkl Prusty, Rajesh Kumar verfasserin aut Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures 2017transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. A. Polymer-matrix composites (PMCs) Elsevier A. Carbon nanotubes and nanofibers Elsevier D. Mechanical testing Elsevier B. Interface/interphase Elsevier Rathore, Dinesh Kumar oth Ray, Bankim Chandra oth Enthalten in Elsevier Newsletter EPNS September 2013 2013 Amsterdam [u.a.] (DE-627)ELV011781912 volume:101 year:2017 pages:215-226 extent:12 https://doi.org/10.1016/j.compositesa.2017.06.020 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_120 GBV_ILN_131 GBV_ILN_2008 GBV_ILN_2018 GBV_ILN_2037 42.00 Biologie: Allgemeines VZ AR 101 2017 215-226 12 |
allfieldsSound |
10.1016/j.compositesa.2017.06.020 doi GBV00000000000378.pica (DE-627)ELV025570234 (ELSEVIER)S1359-835X(17)30245-2 DE-627 ger DE-627 rakwb eng 610 VZ 580 540 VZ BIODIV DE-30 fid 42.00 bkl Prusty, Rajesh Kumar verfasserin aut Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures 2017transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. A. Polymer-matrix composites (PMCs) Elsevier A. Carbon nanotubes and nanofibers Elsevier D. Mechanical testing Elsevier B. Interface/interphase Elsevier Rathore, Dinesh Kumar oth Ray, Bankim Chandra oth Enthalten in Elsevier Newsletter EPNS September 2013 2013 Amsterdam [u.a.] (DE-627)ELV011781912 volume:101 year:2017 pages:215-226 extent:12 https://doi.org/10.1016/j.compositesa.2017.06.020 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_120 GBV_ILN_131 GBV_ILN_2008 GBV_ILN_2018 GBV_ILN_2037 42.00 Biologie: Allgemeines VZ AR 101 2017 215-226 12 |
language |
English |
source |
Enthalten in Newsletter EPNS September 2013 Amsterdam [u.a.] volume:101 year:2017 pages:215-226 extent:12 |
sourceStr |
Enthalten in Newsletter EPNS September 2013 Amsterdam [u.a.] volume:101 year:2017 pages:215-226 extent:12 |
format_phy_str_mv |
Article |
bklname |
Biologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
A. Polymer-matrix composites (PMCs) A. Carbon nanotubes and nanofibers D. Mechanical testing B. Interface/interphase |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Newsletter EPNS September 2013 |
authorswithroles_txt_mv |
Prusty, Rajesh Kumar @@aut@@ Rathore, Dinesh Kumar @@oth@@ Ray, Bankim Chandra @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV011781912 |
dewey-sort |
3610 |
id |
ELV025570234 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025570234</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625144936.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compositesa.2017.06.020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000378.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025570234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-835X(17)30245-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prusty, Rajesh Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">A. Polymer-matrix composites (PMCs)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">A. Carbon nanotubes and nanofibers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">D. Mechanical testing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">B. Interface/interphase</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rathore, Dinesh Kumar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ray, Bankim Chandra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">Newsletter EPNS September 2013</subfield><subfield code="d">2013</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011781912</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:215-226</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.compositesa.2017.06.020</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_131</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="j">Biologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2017</subfield><subfield code="h">215-226</subfield><subfield code="g">12</subfield></datafield></record></collection>
|
author |
Prusty, Rajesh Kumar |
spellingShingle |
Prusty, Rajesh Kumar ddc 610 ddc 580 fid BIODIV bkl 42.00 Elsevier A. Polymer-matrix composites (PMCs) Elsevier A. Carbon nanotubes and nanofibers Elsevier D. Mechanical testing Elsevier B. Interface/interphase Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures |
authorStr |
Prusty, Rajesh Kumar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV011781912 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 580 - Plants (Botany) 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 580 540 VZ BIODIV DE-30 fid 42.00 bkl Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures A. Polymer-matrix composites (PMCs) Elsevier A. Carbon nanotubes and nanofibers Elsevier D. Mechanical testing Elsevier B. Interface/interphase Elsevier |
topic |
ddc 610 ddc 580 fid BIODIV bkl 42.00 Elsevier A. Polymer-matrix composites (PMCs) Elsevier A. Carbon nanotubes and nanofibers Elsevier D. Mechanical testing Elsevier B. Interface/interphase |
topic_unstemmed |
ddc 610 ddc 580 fid BIODIV bkl 42.00 Elsevier A. Polymer-matrix composites (PMCs) Elsevier A. Carbon nanotubes and nanofibers Elsevier D. Mechanical testing Elsevier B. Interface/interphase |
topic_browse |
ddc 610 ddc 580 fid BIODIV bkl 42.00 Elsevier A. Polymer-matrix composites (PMCs) Elsevier A. Carbon nanotubes and nanofibers Elsevier D. Mechanical testing Elsevier B. Interface/interphase |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d k r dk dkr b c r bc bcr |
hierarchy_parent_title |
Newsletter EPNS September 2013 |
hierarchy_parent_id |
ELV011781912 |
dewey-tens |
610 - Medicine & health 580 - Plants (Botany) 540 - Chemistry |
hierarchy_top_title |
Newsletter EPNS September 2013 |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV011781912 |
title |
Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures |
ctrlnum |
(DE-627)ELV025570234 (ELSEVIER)S1359-835X(17)30245-2 |
title_full |
Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures |
author_sort |
Prusty, Rajesh Kumar |
journal |
Newsletter EPNS September 2013 |
journalStr |
Newsletter EPNS September 2013 |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
215 |
author_browse |
Prusty, Rajesh Kumar |
container_volume |
101 |
physical |
12 |
class |
610 VZ 580 540 VZ BIODIV DE-30 fid 42.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Prusty, Rajesh Kumar |
doi_str_mv |
10.1016/j.compositesa.2017.06.020 |
dewey-full |
610 580 540 |
title_sort |
evaluation of the role of functionalized cnt in glass fiber/epoxy composite at above- and sub-zero temperatures: emphasizing interfacial microstructures |
title_auth |
Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures |
abstract |
Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. |
abstractGer |
Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. |
abstract_unstemmed |
Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_120 GBV_ILN_131 GBV_ILN_2008 GBV_ILN_2018 GBV_ILN_2037 |
title_short |
Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures |
url |
https://doi.org/10.1016/j.compositesa.2017.06.020 |
remote_bool |
true |
author2 |
Rathore, Dinesh Kumar Ray, Bankim Chandra |
author2Str |
Rathore, Dinesh Kumar Ray, Bankim Chandra |
ppnlink |
ELV011781912 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.compositesa.2017.06.020 |
up_date |
2024-07-06T17:53:16.597Z |
_version_ |
1803853125753241600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025570234</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625144936.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compositesa.2017.06.020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000378.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025570234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-835X(17)30245-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prusty, Rajesh Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Present work is aimed to elucidate the temperature dependant reinforcement efficiency due to the chemical restructuring of the nano-filler/matrix interphase in carbon nanotube embedded glass fiber/epoxy composite. Oxidized CNT/glass/epoxy composite exhibits 25% and 10% better strength than control glass/epoxy (GE) and pristine CNT/glass/epoxy composites respectively, at room temperature. Covalently bonded CNT/epoxy interface in oxidized nanotube modified epoxy matrix restricts the interfacial debonding to a better extent than pristine one upon excursion to elevated temperature. However, due to massive interfacial decohesion, both these nanophased GE composites result in inferior strength over control GE at 110°C. On the contrary, mechanical gripping at the CNT/epoxy interface at lower temperature maximizes its failure strength, resulting in an admirable structural material for low and cryogenic temperature applications. Thermo-mechanical properties and microscopic evidences of the interfaces at nanoscale (CNT/epoxy) and microscale (glass/epoxy) divulge the synergetic strengthening effect due to both chemical functionalization and low temperature environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">A. Polymer-matrix composites (PMCs)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">A. Carbon nanotubes and nanofibers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">D. Mechanical testing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">B. Interface/interphase</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rathore, Dinesh Kumar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ray, Bankim Chandra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">Newsletter EPNS September 2013</subfield><subfield code="d">2013</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011781912</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:215-226</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.compositesa.2017.06.020</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_131</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="j">Biologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2017</subfield><subfield code="h">215-226</subfield><subfield code="g">12</subfield></datafield></record></collection>
|
score |
7.3993893 |