Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction
Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combin...
Ausführliche Beschreibung
Autor*in: |
Antler, Gilad [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
17 |
---|
Übergeordnetes Werk: |
Enthalten in: 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis - Taylor, William R. ELSEVIER, 2014, journal of the Geochemical Society and the Meteoritical Society, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:203 ; year:2017 ; day:15 ; month:04 ; pages:364-380 ; extent:17 |
Links: |
---|
DOI / URN: |
10.1016/j.gca.2017.01.015 |
---|
Katalog-ID: |
ELV025600567 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV025600567 | ||
003 | DE-627 | ||
005 | 20230625145021.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.gca.2017.01.015 |2 doi | |
028 | 5 | 2 | |a GBV00000000000058A.pica |
035 | |a (DE-627)ELV025600567 | ||
035 | |a (ELSEVIER)S0016-7037(17)30019-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 550 | |
082 | 0 | 4 | |a 550 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 35.70 |2 bkl | ||
084 | |a 42.12 |2 bkl | ||
084 | |a 42.15 |2 bkl | ||
100 | 1 | |a Antler, Gilad |e verfasserin |4 aut | |
245 | 1 | 0 | |a Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction |
264 | 1 | |c 2017transfer abstract | |
300 | |a 17 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. | ||
520 | |a Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. | ||
650 | 7 | |a Multiple sulfur isotopes |2 Elsevier | |
650 | 7 | |a Anaerobic respiration |2 Elsevier | |
650 | 7 | |a Microbial sulfate reduction |2 Elsevier | |
650 | 7 | |a Sulfur isotopes |2 Elsevier | |
650 | 7 | |a Oxygen isotopes |2 Elsevier | |
700 | 1 | |a Turchyn, Alexandra V. |4 oth | |
700 | 1 | |a Ono, Shuhei |4 oth | |
700 | 1 | |a Sivan, Orit |4 oth | |
700 | 1 | |a Bosak, Tanja |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Taylor, William R. ELSEVIER |t 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |d 2014 |d journal of the Geochemical Society and the Meteoritical Society |g New York, NY [u.a.] |w (DE-627)ELV012653268 |
773 | 1 | 8 | |g volume:203 |g year:2017 |g day:15 |g month:04 |g pages:364-380 |g extent:17 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.gca.2017.01.015 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.70 |j Biochemie: Allgemeines |q VZ |
936 | b | k | |a 42.12 |j Biophysik |q VZ |
936 | b | k | |a 42.15 |j Zellbiologie |q VZ |
951 | |a AR | ||
952 | |d 203 |j 2017 |b 15 |c 0415 |h 364-380 |g 17 | ||
953 | |2 045F |a 550 |
author_variant |
g a ga |
---|---|
matchkey_str |
antlergiladturchynalexandravonoshuheisiv:2017----:obnd43sn1ostpfatoainrcrdfeetnrcluases |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
35.70 42.12 42.15 |
publishDate |
2017 |
allfields |
10.1016/j.gca.2017.01.015 doi GBV00000000000058A.pica (DE-627)ELV025600567 (ELSEVIER)S0016-7037(17)30019-4 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Antler, Gilad verfasserin aut Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction 2017transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. Multiple sulfur isotopes Elsevier Anaerobic respiration Elsevier Microbial sulfate reduction Elsevier Sulfur isotopes Elsevier Oxygen isotopes Elsevier Turchyn, Alexandra V. oth Ono, Shuhei oth Sivan, Orit oth Bosak, Tanja oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:203 year:2017 day:15 month:04 pages:364-380 extent:17 https://doi.org/10.1016/j.gca.2017.01.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 203 2017 15 0415 364-380 17 045F 550 |
spelling |
10.1016/j.gca.2017.01.015 doi GBV00000000000058A.pica (DE-627)ELV025600567 (ELSEVIER)S0016-7037(17)30019-4 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Antler, Gilad verfasserin aut Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction 2017transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. Multiple sulfur isotopes Elsevier Anaerobic respiration Elsevier Microbial sulfate reduction Elsevier Sulfur isotopes Elsevier Oxygen isotopes Elsevier Turchyn, Alexandra V. oth Ono, Shuhei oth Sivan, Orit oth Bosak, Tanja oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:203 year:2017 day:15 month:04 pages:364-380 extent:17 https://doi.org/10.1016/j.gca.2017.01.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 203 2017 15 0415 364-380 17 045F 550 |
allfields_unstemmed |
10.1016/j.gca.2017.01.015 doi GBV00000000000058A.pica (DE-627)ELV025600567 (ELSEVIER)S0016-7037(17)30019-4 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Antler, Gilad verfasserin aut Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction 2017transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. Multiple sulfur isotopes Elsevier Anaerobic respiration Elsevier Microbial sulfate reduction Elsevier Sulfur isotopes Elsevier Oxygen isotopes Elsevier Turchyn, Alexandra V. oth Ono, Shuhei oth Sivan, Orit oth Bosak, Tanja oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:203 year:2017 day:15 month:04 pages:364-380 extent:17 https://doi.org/10.1016/j.gca.2017.01.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 203 2017 15 0415 364-380 17 045F 550 |
allfieldsGer |
10.1016/j.gca.2017.01.015 doi GBV00000000000058A.pica (DE-627)ELV025600567 (ELSEVIER)S0016-7037(17)30019-4 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Antler, Gilad verfasserin aut Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction 2017transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. Multiple sulfur isotopes Elsevier Anaerobic respiration Elsevier Microbial sulfate reduction Elsevier Sulfur isotopes Elsevier Oxygen isotopes Elsevier Turchyn, Alexandra V. oth Ono, Shuhei oth Sivan, Orit oth Bosak, Tanja oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:203 year:2017 day:15 month:04 pages:364-380 extent:17 https://doi.org/10.1016/j.gca.2017.01.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 203 2017 15 0415 364-380 17 045F 550 |
allfieldsSound |
10.1016/j.gca.2017.01.015 doi GBV00000000000058A.pica (DE-627)ELV025600567 (ELSEVIER)S0016-7037(17)30019-4 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Antler, Gilad verfasserin aut Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction 2017transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. Multiple sulfur isotopes Elsevier Anaerobic respiration Elsevier Microbial sulfate reduction Elsevier Sulfur isotopes Elsevier Oxygen isotopes Elsevier Turchyn, Alexandra V. oth Ono, Shuhei oth Sivan, Orit oth Bosak, Tanja oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:203 year:2017 day:15 month:04 pages:364-380 extent:17 https://doi.org/10.1016/j.gca.2017.01.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 203 2017 15 0415 364-380 17 045F 550 |
language |
English |
source |
Enthalten in 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis New York, NY [u.a.] volume:203 year:2017 day:15 month:04 pages:364-380 extent:17 |
sourceStr |
Enthalten in 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis New York, NY [u.a.] volume:203 year:2017 day:15 month:04 pages:364-380 extent:17 |
format_phy_str_mv |
Article |
bklname |
Biochemie: Allgemeines Biophysik Zellbiologie |
institution |
findex.gbv.de |
topic_facet |
Multiple sulfur isotopes Anaerobic respiration Microbial sulfate reduction Sulfur isotopes Oxygen isotopes |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
authorswithroles_txt_mv |
Antler, Gilad @@aut@@ Turchyn, Alexandra V. @@oth@@ Ono, Shuhei @@oth@@ Sivan, Orit @@oth@@ Bosak, Tanja @@oth@@ |
publishDateDaySort_date |
2017-01-15T00:00:00Z |
hierarchy_top_id |
ELV012653268 |
dewey-sort |
3550 |
id |
ELV025600567 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025600567</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625145021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gca.2017.01.015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000058A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025600567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7037(17)30019-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Antler, Gilad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multiple sulfur isotopes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anaerobic respiration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microbial sulfate reduction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sulfur isotopes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oxygen isotopes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Turchyn, Alexandra V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ono, Shuhei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sivan, Orit</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bosak, Tanja</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Taylor, William R. ELSEVIER</subfield><subfield code="t">109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis</subfield><subfield code="d">2014</subfield><subfield code="d">journal of the Geochemical Society and the Meteoritical Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV012653268</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:203</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:364-380</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gca.2017.01.015</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.15</subfield><subfield code="j">Zellbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">203</subfield><subfield code="j">2017</subfield><subfield code="b">15</subfield><subfield code="c">0415</subfield><subfield code="h">364-380</subfield><subfield code="g">17</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">550</subfield></datafield></record></collection>
|
author |
Antler, Gilad |
spellingShingle |
Antler, Gilad ddc 550 ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Multiple sulfur isotopes Elsevier Anaerobic respiration Elsevier Microbial sulfate reduction Elsevier Sulfur isotopes Elsevier Oxygen isotopes Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction |
authorStr |
Antler, Gilad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012653268 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction Multiple sulfur isotopes Elsevier Anaerobic respiration Elsevier Microbial sulfate reduction Elsevier Sulfur isotopes Elsevier Oxygen isotopes Elsevier |
topic |
ddc 550 ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Multiple sulfur isotopes Elsevier Anaerobic respiration Elsevier Microbial sulfate reduction Elsevier Sulfur isotopes Elsevier Oxygen isotopes |
topic_unstemmed |
ddc 550 ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Multiple sulfur isotopes Elsevier Anaerobic respiration Elsevier Microbial sulfate reduction Elsevier Sulfur isotopes Elsevier Oxygen isotopes |
topic_browse |
ddc 550 ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Multiple sulfur isotopes Elsevier Anaerobic respiration Elsevier Microbial sulfate reduction Elsevier Sulfur isotopes Elsevier Oxygen isotopes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a v t av avt s o so o s os t b tb |
hierarchy_parent_title |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
hierarchy_parent_id |
ELV012653268 |
dewey-tens |
550 - Earth sciences & geology 610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012653268 |
title |
Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction |
ctrlnum |
(DE-627)ELV025600567 (ELSEVIER)S0016-7037(17)30019-4 |
title_full |
Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction |
author_sort |
Antler, Gilad |
journal |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
journalStr |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
364 |
author_browse |
Antler, Gilad |
container_volume |
203 |
physical |
17 |
class |
550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Antler, Gilad |
doi_str_mv |
10.1016/j.gca.2017.01.015 |
dewey-full |
550 610 570 |
title_sort |
combined 34s, 33s and 18o isotope fractionations record different intracellular steps of microbial sulfate reduction |
title_auth |
Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction |
abstract |
Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. |
abstractGer |
Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. |
abstract_unstemmed |
Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction |
url |
https://doi.org/10.1016/j.gca.2017.01.015 |
remote_bool |
true |
author2 |
Turchyn, Alexandra V. Ono, Shuhei Sivan, Orit Bosak, Tanja |
author2Str |
Turchyn, Alexandra V. Ono, Shuhei Sivan, Orit Bosak, Tanja |
ppnlink |
ELV012653268 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.gca.2017.01.015 |
up_date |
2024-07-06T17:58:34.012Z |
_version_ |
1803853458585944064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025600567</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625145021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gca.2017.01.015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000058A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025600567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7037(17)30019-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Antler, Gilad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multiple sulfur isotopes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anaerobic respiration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microbial sulfate reduction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sulfur isotopes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oxygen isotopes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Turchyn, Alexandra V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ono, Shuhei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sivan, Orit</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bosak, Tanja</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Taylor, William R. ELSEVIER</subfield><subfield code="t">109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis</subfield><subfield code="d">2014</subfield><subfield code="d">journal of the Geochemical Society and the Meteoritical Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV012653268</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:203</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:364-380</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gca.2017.01.015</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.15</subfield><subfield code="j">Zellbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">203</subfield><subfield code="j">2017</subfield><subfield code="b">15</subfield><subfield code="c">0415</subfield><subfield code="h">364-380</subfield><subfield code="g">17</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">550</subfield></datafield></record></collection>
|
score |
7.4010687 |