Dual Kadec–Klee property and fixed points
A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–K...
Ausführliche Beschreibung
Autor*in: |
Saint Raymond, Jean [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
20 |
---|
Übergeordnetes Werk: |
Enthalten in: Corrigendum to “Rifampicin resistance mutations in the rpoB gene of - Urusova, Darya V. ELSEVIER, 2022, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:272 ; year:2017 ; number:9 ; day:1 ; month:05 ; pages:3825-3844 ; extent:20 |
Links: |
---|
DOI / URN: |
10.1016/j.jfa.2016.12.016 |
---|
Katalog-ID: |
ELV025651579 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV025651579 | ||
003 | DE-627 | ||
005 | 20230625145112.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jfa.2016.12.016 |2 doi | |
028 | 5 | 2 | |a GBVA2017021000028.pica |
035 | |a (DE-627)ELV025651579 | ||
035 | |a (ELSEVIER)S0022-1236(16)30403-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 44.00 |2 bkl | ||
100 | 1 | |a Saint Raymond, Jean |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dual Kadec–Klee property and fixed points |
264 | 1 | |c 2017transfer abstract | |
300 | |a 20 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . | ||
520 | |a A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . | ||
650 | 7 | |a 52A40 |2 Elsevier | |
650 | 7 | |a 46A25 |2 Elsevier | |
650 | 7 | |a 46B10 |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Urusova, Darya V. ELSEVIER |t Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |d 2022 |g Amsterdam [u.a.] |w (DE-627)ELV007566018 |
773 | 1 | 8 | |g volume:272 |g year:2017 |g number:9 |g day:1 |g month:05 |g pages:3825-3844 |g extent:20 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jfa.2016.12.016 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.00 |j Medizin: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 272 |j 2017 |e 9 |b 1 |c 0501 |h 3825-3844 |g 20 | ||
953 | |2 045F |a 510 |
author_variant |
r j s rj rjs |
---|---|
matchkey_str |
saintraymondjean:2017----:ulaekepoetad |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
44.00 |
publishDate |
2017 |
allfields |
10.1016/j.jfa.2016.12.016 doi GBVA2017021000028.pica (DE-627)ELV025651579 (ELSEVIER)S0022-1236(16)30403-7 DE-627 ger DE-627 rakwb eng 510 510 DE-600 570 VZ BIODIV DE-30 fid 44.00 bkl Saint Raymond, Jean verfasserin aut Dual Kadec–Klee property and fixed points 2017transfer abstract 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . 52A40 Elsevier 46A25 Elsevier 46B10 Elsevier Enthalten in Elsevier Urusova, Darya V. ELSEVIER Corrigendum to “Rifampicin resistance mutations in the rpoB gene of 2022 Amsterdam [u.a.] (DE-627)ELV007566018 volume:272 year:2017 number:9 day:1 month:05 pages:3825-3844 extent:20 https://doi.org/10.1016/j.jfa.2016.12.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 272 2017 9 1 0501 3825-3844 20 045F 510 |
spelling |
10.1016/j.jfa.2016.12.016 doi GBVA2017021000028.pica (DE-627)ELV025651579 (ELSEVIER)S0022-1236(16)30403-7 DE-627 ger DE-627 rakwb eng 510 510 DE-600 570 VZ BIODIV DE-30 fid 44.00 bkl Saint Raymond, Jean verfasserin aut Dual Kadec–Klee property and fixed points 2017transfer abstract 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . 52A40 Elsevier 46A25 Elsevier 46B10 Elsevier Enthalten in Elsevier Urusova, Darya V. ELSEVIER Corrigendum to “Rifampicin resistance mutations in the rpoB gene of 2022 Amsterdam [u.a.] (DE-627)ELV007566018 volume:272 year:2017 number:9 day:1 month:05 pages:3825-3844 extent:20 https://doi.org/10.1016/j.jfa.2016.12.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 272 2017 9 1 0501 3825-3844 20 045F 510 |
allfields_unstemmed |
10.1016/j.jfa.2016.12.016 doi GBVA2017021000028.pica (DE-627)ELV025651579 (ELSEVIER)S0022-1236(16)30403-7 DE-627 ger DE-627 rakwb eng 510 510 DE-600 570 VZ BIODIV DE-30 fid 44.00 bkl Saint Raymond, Jean verfasserin aut Dual Kadec–Klee property and fixed points 2017transfer abstract 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . 52A40 Elsevier 46A25 Elsevier 46B10 Elsevier Enthalten in Elsevier Urusova, Darya V. ELSEVIER Corrigendum to “Rifampicin resistance mutations in the rpoB gene of 2022 Amsterdam [u.a.] (DE-627)ELV007566018 volume:272 year:2017 number:9 day:1 month:05 pages:3825-3844 extent:20 https://doi.org/10.1016/j.jfa.2016.12.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 272 2017 9 1 0501 3825-3844 20 045F 510 |
allfieldsGer |
10.1016/j.jfa.2016.12.016 doi GBVA2017021000028.pica (DE-627)ELV025651579 (ELSEVIER)S0022-1236(16)30403-7 DE-627 ger DE-627 rakwb eng 510 510 DE-600 570 VZ BIODIV DE-30 fid 44.00 bkl Saint Raymond, Jean verfasserin aut Dual Kadec–Klee property and fixed points 2017transfer abstract 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . 52A40 Elsevier 46A25 Elsevier 46B10 Elsevier Enthalten in Elsevier Urusova, Darya V. ELSEVIER Corrigendum to “Rifampicin resistance mutations in the rpoB gene of 2022 Amsterdam [u.a.] (DE-627)ELV007566018 volume:272 year:2017 number:9 day:1 month:05 pages:3825-3844 extent:20 https://doi.org/10.1016/j.jfa.2016.12.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 272 2017 9 1 0501 3825-3844 20 045F 510 |
allfieldsSound |
10.1016/j.jfa.2016.12.016 doi GBVA2017021000028.pica (DE-627)ELV025651579 (ELSEVIER)S0022-1236(16)30403-7 DE-627 ger DE-627 rakwb eng 510 510 DE-600 570 VZ BIODIV DE-30 fid 44.00 bkl Saint Raymond, Jean verfasserin aut Dual Kadec–Klee property and fixed points 2017transfer abstract 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . 52A40 Elsevier 46A25 Elsevier 46B10 Elsevier Enthalten in Elsevier Urusova, Darya V. ELSEVIER Corrigendum to “Rifampicin resistance mutations in the rpoB gene of 2022 Amsterdam [u.a.] (DE-627)ELV007566018 volume:272 year:2017 number:9 day:1 month:05 pages:3825-3844 extent:20 https://doi.org/10.1016/j.jfa.2016.12.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 272 2017 9 1 0501 3825-3844 20 045F 510 |
language |
English |
source |
Enthalten in Corrigendum to “Rifampicin resistance mutations in the rpoB gene of Amsterdam [u.a.] volume:272 year:2017 number:9 day:1 month:05 pages:3825-3844 extent:20 |
sourceStr |
Enthalten in Corrigendum to “Rifampicin resistance mutations in the rpoB gene of Amsterdam [u.a.] volume:272 year:2017 number:9 day:1 month:05 pages:3825-3844 extent:20 |
format_phy_str_mv |
Article |
bklname |
Medizin: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
52A40 46A25 46B10 |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |
authorswithroles_txt_mv |
Saint Raymond, Jean @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV007566018 |
dewey-sort |
3510 |
id |
ELV025651579 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025651579</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625145112.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jfa.2016.12.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017021000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025651579</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1236(16)30403-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saint Raymond, Jean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dual Kadec–Klee property and fixed points</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } .</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } .</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">52A40</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">46A25</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">46B10</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Urusova, Darya V. ELSEVIER</subfield><subfield code="t">Corrigendum to “Rifampicin resistance mutations in the rpoB gene of</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007566018</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:272</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:3825-3844</subfield><subfield code="g">extent:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jfa.2016.12.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">272</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">3825-3844</subfield><subfield code="g">20</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Saint Raymond, Jean |
spellingShingle |
Saint Raymond, Jean ddc 510 ddc 570 fid BIODIV bkl 44.00 Elsevier 52A40 Elsevier 46A25 Elsevier 46B10 Dual Kadec–Klee property and fixed points |
authorStr |
Saint Raymond, Jean |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007566018 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 570 VZ BIODIV DE-30 fid 44.00 bkl Dual Kadec–Klee property and fixed points 52A40 Elsevier 46A25 Elsevier 46B10 Elsevier |
topic |
ddc 510 ddc 570 fid BIODIV bkl 44.00 Elsevier 52A40 Elsevier 46A25 Elsevier 46B10 |
topic_unstemmed |
ddc 510 ddc 570 fid BIODIV bkl 44.00 Elsevier 52A40 Elsevier 46A25 Elsevier 46B10 |
topic_browse |
ddc 510 ddc 570 fid BIODIV bkl 44.00 Elsevier 52A40 Elsevier 46A25 Elsevier 46B10 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |
hierarchy_parent_id |
ELV007566018 |
dewey-tens |
510 - Mathematics 570 - Life sciences; biology |
hierarchy_top_title |
Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007566018 |
title |
Dual Kadec–Klee property and fixed points |
ctrlnum |
(DE-627)ELV025651579 (ELSEVIER)S0022-1236(16)30403-7 |
title_full |
Dual Kadec–Klee property and fixed points |
author_sort |
Saint Raymond, Jean |
journal |
Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |
journalStr |
Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
3825 |
author_browse |
Saint Raymond, Jean |
container_volume |
272 |
physical |
20 |
class |
510 510 DE-600 570 VZ BIODIV DE-30 fid 44.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Saint Raymond, Jean |
doi_str_mv |
10.1016/j.jfa.2016.12.016 |
dewey-full |
510 570 |
title_sort |
dual kadec–klee property and fixed points |
title_auth |
Dual Kadec–Klee property and fixed points |
abstract |
A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . |
abstractGer |
A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . |
abstract_unstemmed |
A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } . |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
container_issue |
9 |
title_short |
Dual Kadec–Klee property and fixed points |
url |
https://doi.org/10.1016/j.jfa.2016.12.016 |
remote_bool |
true |
ppnlink |
ELV007566018 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jfa.2016.12.016 |
up_date |
2024-07-06T18:06:33.962Z |
_version_ |
1803853961848946688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025651579</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625145112.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jfa.2016.12.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017021000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025651579</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1236(16)30403-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saint Raymond, Jean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dual Kadec–Klee property and fixed points</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } .</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A Banach space X is said to have the dual Kadec–Klee property iff on the unit sphere of the dual space X ⁎ the weak*-topology coincides with the norm-topology. A. Amini-Harandi and M. Fakhar extended a theorem of B. Ricceri concerning the Kadec–Klee property by showing that if X has the dual Kadec–Klee property then for every compact mapping φ : B X ⁎ → X ∖ { 0 } there exists some f in the unit sphere of X ⁎ such that 〈 f , φ ( f ) 〉 = ‖ φ ( f ) ‖ and conjectured that this yields a necessary and sufficient condition for X to have the dual Kadec–Klee property. We prove here that it is almost the case: we introduce a weakening of the dual Kadec–Klee property, here called the NAKK* property, and show that this property is equivalent to the above property about compact mappings from B X ⁎ to X ∖ { 0 } .</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">52A40</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">46A25</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">46B10</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Urusova, Darya V. ELSEVIER</subfield><subfield code="t">Corrigendum to “Rifampicin resistance mutations in the rpoB gene of</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007566018</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:272</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:3825-3844</subfield><subfield code="g">extent:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jfa.2016.12.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">272</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">3825-3844</subfield><subfield code="g">20</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.4010687 |