Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle
The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel...
Ausführliche Beschreibung
Autor*in: |
dos Santos, Lauro Roberto [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection - He, Fuliang ELSEVIER, 2019, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:493 ; year:2017 ; pages:30-39 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.jnucmat.2017.05.050 |
---|
Katalog-ID: |
ELV025662376 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV025662376 | ||
003 | DE-627 | ||
005 | 20230625145136.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jnucmat.2017.05.050 |2 doi | |
028 | 5 | 2 | |a GBV00000000000268A.pica |
035 | |a (DE-627)ELV025662376 | ||
035 | |a (ELSEVIER)S0022-3115(16)31302-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 |a 620 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 53.00 |2 bkl | ||
084 | |a 35.06 |2 bkl | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a dos Santos, Lauro Roberto |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle |
264 | 1 | |c 2017transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. | ||
520 | |a The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. | ||
650 | 7 | |a Fabrication |2 Elsevier | |
650 | 7 | |a Burnable poison |2 Elsevier | |
650 | 7 | |a Sintering |2 Elsevier | |
650 | 7 | |a Nuclear fuel |2 Elsevier | |
650 | 7 | |a Uranium dioxide |2 Elsevier | |
650 | 7 | |a Gadolinium oxide |2 Elsevier | |
700 | 1 | |a Durazzo, Michelangelo |4 oth | |
700 | 1 | |a Urano de Carvalho, Elita Fontenele |4 oth | |
700 | 1 | |a Riella, Humberto Gracher |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a He, Fuliang ELSEVIER |t An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |d 2019 |g Amsterdam [u.a.] |w (DE-627)ELV00295916X |
773 | 1 | 8 | |g volume:493 |g year:2017 |g pages:30-39 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jnucmat.2017.05.050 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 53.00 |j Elektrotechnik: Allgemeines |q VZ |
936 | b | k | |a 35.06 |j Computeranwendungen |x Chemie |q VZ |
936 | b | k | |a 54.00 |j Informatik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 493 |j 2017 |h 30-39 |g 10 | ||
953 | |2 045F |a 530 |
author_variant |
s l r d slr slrd |
---|---|
matchkey_str |
dossantoslaurorobertodurazzomichelangelo:2017----:fetflhoteitrnou2dofeplesihdi |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
53.00 35.06 54.00 |
publishDate |
2017 |
allfields |
10.1016/j.jnucmat.2017.05.050 doi GBV00000000000268A.pica (DE-627)ELV025662376 (ELSEVIER)S0022-3115(16)31302-2 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl dos Santos, Lauro Roberto verfasserin aut Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. Fabrication Elsevier Burnable poison Elsevier Sintering Elsevier Nuclear fuel Elsevier Uranium dioxide Elsevier Gadolinium oxide Elsevier Durazzo, Michelangelo oth Urano de Carvalho, Elita Fontenele oth Riella, Humberto Gracher oth Enthalten in Elsevier Science He, Fuliang ELSEVIER An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection 2019 Amsterdam [u.a.] (DE-627)ELV00295916X volume:493 year:2017 pages:30-39 extent:10 https://doi.org/10.1016/j.jnucmat.2017.05.050 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 493 2017 30-39 10 045F 530 |
spelling |
10.1016/j.jnucmat.2017.05.050 doi GBV00000000000268A.pica (DE-627)ELV025662376 (ELSEVIER)S0022-3115(16)31302-2 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl dos Santos, Lauro Roberto verfasserin aut Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. Fabrication Elsevier Burnable poison Elsevier Sintering Elsevier Nuclear fuel Elsevier Uranium dioxide Elsevier Gadolinium oxide Elsevier Durazzo, Michelangelo oth Urano de Carvalho, Elita Fontenele oth Riella, Humberto Gracher oth Enthalten in Elsevier Science He, Fuliang ELSEVIER An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection 2019 Amsterdam [u.a.] (DE-627)ELV00295916X volume:493 year:2017 pages:30-39 extent:10 https://doi.org/10.1016/j.jnucmat.2017.05.050 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 493 2017 30-39 10 045F 530 |
allfields_unstemmed |
10.1016/j.jnucmat.2017.05.050 doi GBV00000000000268A.pica (DE-627)ELV025662376 (ELSEVIER)S0022-3115(16)31302-2 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl dos Santos, Lauro Roberto verfasserin aut Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. Fabrication Elsevier Burnable poison Elsevier Sintering Elsevier Nuclear fuel Elsevier Uranium dioxide Elsevier Gadolinium oxide Elsevier Durazzo, Michelangelo oth Urano de Carvalho, Elita Fontenele oth Riella, Humberto Gracher oth Enthalten in Elsevier Science He, Fuliang ELSEVIER An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection 2019 Amsterdam [u.a.] (DE-627)ELV00295916X volume:493 year:2017 pages:30-39 extent:10 https://doi.org/10.1016/j.jnucmat.2017.05.050 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 493 2017 30-39 10 045F 530 |
allfieldsGer |
10.1016/j.jnucmat.2017.05.050 doi GBV00000000000268A.pica (DE-627)ELV025662376 (ELSEVIER)S0022-3115(16)31302-2 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl dos Santos, Lauro Roberto verfasserin aut Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. Fabrication Elsevier Burnable poison Elsevier Sintering Elsevier Nuclear fuel Elsevier Uranium dioxide Elsevier Gadolinium oxide Elsevier Durazzo, Michelangelo oth Urano de Carvalho, Elita Fontenele oth Riella, Humberto Gracher oth Enthalten in Elsevier Science He, Fuliang ELSEVIER An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection 2019 Amsterdam [u.a.] (DE-627)ELV00295916X volume:493 year:2017 pages:30-39 extent:10 https://doi.org/10.1016/j.jnucmat.2017.05.050 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 493 2017 30-39 10 045F 530 |
allfieldsSound |
10.1016/j.jnucmat.2017.05.050 doi GBV00000000000268A.pica (DE-627)ELV025662376 (ELSEVIER)S0022-3115(16)31302-2 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl dos Santos, Lauro Roberto verfasserin aut Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. Fabrication Elsevier Burnable poison Elsevier Sintering Elsevier Nuclear fuel Elsevier Uranium dioxide Elsevier Gadolinium oxide Elsevier Durazzo, Michelangelo oth Urano de Carvalho, Elita Fontenele oth Riella, Humberto Gracher oth Enthalten in Elsevier Science He, Fuliang ELSEVIER An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection 2019 Amsterdam [u.a.] (DE-627)ELV00295916X volume:493 year:2017 pages:30-39 extent:10 https://doi.org/10.1016/j.jnucmat.2017.05.050 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 493 2017 30-39 10 045F 530 |
language |
English |
source |
Enthalten in An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection Amsterdam [u.a.] volume:493 year:2017 pages:30-39 extent:10 |
sourceStr |
Enthalten in An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection Amsterdam [u.a.] volume:493 year:2017 pages:30-39 extent:10 |
format_phy_str_mv |
Article |
bklname |
Elektrotechnik: Allgemeines Computeranwendungen Informatik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Fabrication Burnable poison Sintering Nuclear fuel Uranium dioxide Gadolinium oxide |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |
authorswithroles_txt_mv |
dos Santos, Lauro Roberto @@aut@@ Durazzo, Michelangelo @@oth@@ Urano de Carvalho, Elita Fontenele @@oth@@ Riella, Humberto Gracher @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV00295916X |
dewey-sort |
3530 |
id |
ELV025662376 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025662376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625145136.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jnucmat.2017.05.050</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000268A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025662376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-3115(16)31302-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.06</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">dos Santos, Lauro Roberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fabrication</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Burnable poison</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sintering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nuclear fuel</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Uranium dioxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gadolinium oxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Durazzo, Michelangelo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Urano de Carvalho, Elita Fontenele</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riella, Humberto Gracher</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">He, Fuliang ELSEVIER</subfield><subfield code="t">An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00295916X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:493</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:30-39</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jnucmat.2017.05.050</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="j">Elektrotechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.06</subfield><subfield code="j">Computeranwendungen</subfield><subfield code="x">Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">493</subfield><subfield code="j">2017</subfield><subfield code="h">30-39</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
dos Santos, Lauro Roberto |
spellingShingle |
dos Santos, Lauro Roberto ddc 530 ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 Elsevier Fabrication Elsevier Burnable poison Elsevier Sintering Elsevier Nuclear fuel Elsevier Uranium dioxide Elsevier Gadolinium oxide Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle |
authorStr |
dos Santos, Lauro Roberto |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00295916X |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle Fabrication Elsevier Burnable poison Elsevier Sintering Elsevier Nuclear fuel Elsevier Uranium dioxide Elsevier Gadolinium oxide Elsevier |
topic |
ddc 530 ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 Elsevier Fabrication Elsevier Burnable poison Elsevier Sintering Elsevier Nuclear fuel Elsevier Uranium dioxide Elsevier Gadolinium oxide |
topic_unstemmed |
ddc 530 ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 Elsevier Fabrication Elsevier Burnable poison Elsevier Sintering Elsevier Nuclear fuel Elsevier Uranium dioxide Elsevier Gadolinium oxide |
topic_browse |
ddc 530 ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 Elsevier Fabrication Elsevier Burnable poison Elsevier Sintering Elsevier Nuclear fuel Elsevier Uranium dioxide Elsevier Gadolinium oxide |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m d md d c e f u dcef dcefu h g r hg hgr |
hierarchy_parent_title |
An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |
hierarchy_parent_id |
ELV00295916X |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00295916X |
title |
Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle |
ctrlnum |
(DE-627)ELV025662376 (ELSEVIER)S0022-3115(16)31302-2 |
title_full |
Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle |
author_sort |
dos Santos, Lauro Roberto |
journal |
An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |
journalStr |
An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
30 |
author_browse |
dos Santos, Lauro Roberto |
container_volume |
493 |
physical |
10 |
class |
530 620 530 DE-600 620 DE-600 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
dos Santos, Lauro Roberto |
doi_str_mv |
10.1016/j.jnucmat.2017.05.050 |
dewey-full |
530 620 |
title_sort |
effect of al(oh)3 on the sintering of uo2–gd2o3 fuel pellets with addition of u3o8 from recycle |
title_auth |
Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle |
abstract |
The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. |
abstractGer |
The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. |
abstract_unstemmed |
The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle |
url |
https://doi.org/10.1016/j.jnucmat.2017.05.050 |
remote_bool |
true |
author2 |
Durazzo, Michelangelo Urano de Carvalho, Elita Fontenele Riella, Humberto Gracher |
author2Str |
Durazzo, Michelangelo Urano de Carvalho, Elita Fontenele Riella, Humberto Gracher |
ppnlink |
ELV00295916X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.jnucmat.2017.05.050 |
up_date |
2024-07-06T18:08:44.203Z |
_version_ |
1803854098417582080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV025662376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625145136.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jnucmat.2017.05.050</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000268A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV025662376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-3115(16)31302-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.06</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">dos Santos, Lauro Roberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of Al(OH)3 on the sintering of UO2–Gd2O3 fuel pellets with addition of U3O8 from recycle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fabrication</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Burnable poison</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sintering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nuclear fuel</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Uranium dioxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gadolinium oxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Durazzo, Michelangelo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Urano de Carvalho, Elita Fontenele</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riella, Humberto Gracher</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">He, Fuliang ELSEVIER</subfield><subfield code="t">An image segmentation algorithm based on double-layer pulse-coupled neural network model for kiwifruit detection</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00295916X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:493</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:30-39</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jnucmat.2017.05.050</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="j">Elektrotechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.06</subfield><subfield code="j">Computeranwendungen</subfield><subfield code="x">Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">493</subfield><subfield code="j">2017</subfield><subfield code="h">30-39</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.4015245 |