A self-evolving functional-linked wavelet neural network for control applications
Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a...
Ausführliche Beschreibung
Autor*in: |
Hsu, Chun-Fei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
Functional-linked neural network |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Atomic collapse in graphene quantum dots in a magnetic field - Eren, I. ELSEVIER, 2022, the official journal of the World Federation on Soft Computing (WFSC), Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2013 ; number:11 ; pages:4392-4402 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.asoc.2013.06.012 |
---|
Katalog-ID: |
ELV027126145 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV027126145 | ||
003 | DE-627 | ||
005 | 20230623185426.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.asoc.2013.06.012 |2 doi | |
028 | 5 | 2 | |a GBVA2013006000017.pica |
035 | |a (DE-627)ELV027126145 | ||
035 | |a (ELSEVIER)S1568-4946(13)00201-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 540 |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Hsu, Chun-Fei |e verfasserin |4 aut | |
245 | 1 | 0 | |a A self-evolving functional-linked wavelet neural network for control applications |
264 | 1 | |c 2013 | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a class of uncertain nonlinear systems. • The proposed ASFWNC system is applied to a chaotic dynamic and a DC motor. • Simulation and experimental results verify that the proposed ASFWNC system can achieve high-precision tracking performance. | ||
650 | 7 | |a Neural control |2 Elsevier | |
650 | 7 | |a Functional-linked neural network |2 Elsevier | |
650 | 7 | |a Wavelet neural network, Dynamical structure |2 Elsevier | |
650 | 7 | |a Adaptive control |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Eren, I. ELSEVIER |t Atomic collapse in graphene quantum dots in a magnetic field |d 2022 |d the official journal of the World Federation on Soft Computing (WFSC) |g Amsterdam [u.a.] |w (DE-627)ELV007866305 |
773 | 1 | 8 | |g volume:13 |g year:2013 |g number:11 |g pages:4392-4402 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.asoc.2013.06.012 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 33.00 |j Physik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 13 |j 2013 |e 11 |h 4392-4402 |g 11 | ||
953 | |2 045F |a 004 |
author_variant |
c f h cfh |
---|---|
matchkey_str |
hsuchunfei:2013----:sleovnfntoalnewvlterlewrf |
hierarchy_sort_str |
2013 |
bklnumber |
33.00 |
publishDate |
2013 |
allfields |
10.1016/j.asoc.2013.06.012 doi GBVA2013006000017.pica (DE-627)ELV027126145 (ELSEVIER)S1568-4946(13)00201-9 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 530 VZ 33.00 bkl Hsu, Chun-Fei verfasserin aut A self-evolving functional-linked wavelet neural network for control applications 2013 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a class of uncertain nonlinear systems. • The proposed ASFWNC system is applied to a chaotic dynamic and a DC motor. • Simulation and experimental results verify that the proposed ASFWNC system can achieve high-precision tracking performance. Neural control Elsevier Functional-linked neural network Elsevier Wavelet neural network, Dynamical structure Elsevier Adaptive control Elsevier Enthalten in Elsevier Science Eren, I. ELSEVIER Atomic collapse in graphene quantum dots in a magnetic field 2022 the official journal of the World Federation on Soft Computing (WFSC) Amsterdam [u.a.] (DE-627)ELV007866305 volume:13 year:2013 number:11 pages:4392-4402 extent:11 https://doi.org/10.1016/j.asoc.2013.06.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 33.00 Physik: Allgemeines VZ AR 13 2013 11 4392-4402 11 045F 004 |
spelling |
10.1016/j.asoc.2013.06.012 doi GBVA2013006000017.pica (DE-627)ELV027126145 (ELSEVIER)S1568-4946(13)00201-9 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 530 VZ 33.00 bkl Hsu, Chun-Fei verfasserin aut A self-evolving functional-linked wavelet neural network for control applications 2013 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a class of uncertain nonlinear systems. • The proposed ASFWNC system is applied to a chaotic dynamic and a DC motor. • Simulation and experimental results verify that the proposed ASFWNC system can achieve high-precision tracking performance. Neural control Elsevier Functional-linked neural network Elsevier Wavelet neural network, Dynamical structure Elsevier Adaptive control Elsevier Enthalten in Elsevier Science Eren, I. ELSEVIER Atomic collapse in graphene quantum dots in a magnetic field 2022 the official journal of the World Federation on Soft Computing (WFSC) Amsterdam [u.a.] (DE-627)ELV007866305 volume:13 year:2013 number:11 pages:4392-4402 extent:11 https://doi.org/10.1016/j.asoc.2013.06.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 33.00 Physik: Allgemeines VZ AR 13 2013 11 4392-4402 11 045F 004 |
allfields_unstemmed |
10.1016/j.asoc.2013.06.012 doi GBVA2013006000017.pica (DE-627)ELV027126145 (ELSEVIER)S1568-4946(13)00201-9 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 530 VZ 33.00 bkl Hsu, Chun-Fei verfasserin aut A self-evolving functional-linked wavelet neural network for control applications 2013 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a class of uncertain nonlinear systems. • The proposed ASFWNC system is applied to a chaotic dynamic and a DC motor. • Simulation and experimental results verify that the proposed ASFWNC system can achieve high-precision tracking performance. Neural control Elsevier Functional-linked neural network Elsevier Wavelet neural network, Dynamical structure Elsevier Adaptive control Elsevier Enthalten in Elsevier Science Eren, I. ELSEVIER Atomic collapse in graphene quantum dots in a magnetic field 2022 the official journal of the World Federation on Soft Computing (WFSC) Amsterdam [u.a.] (DE-627)ELV007866305 volume:13 year:2013 number:11 pages:4392-4402 extent:11 https://doi.org/10.1016/j.asoc.2013.06.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 33.00 Physik: Allgemeines VZ AR 13 2013 11 4392-4402 11 045F 004 |
allfieldsGer |
10.1016/j.asoc.2013.06.012 doi GBVA2013006000017.pica (DE-627)ELV027126145 (ELSEVIER)S1568-4946(13)00201-9 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 530 VZ 33.00 bkl Hsu, Chun-Fei verfasserin aut A self-evolving functional-linked wavelet neural network for control applications 2013 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a class of uncertain nonlinear systems. • The proposed ASFWNC system is applied to a chaotic dynamic and a DC motor. • Simulation and experimental results verify that the proposed ASFWNC system can achieve high-precision tracking performance. Neural control Elsevier Functional-linked neural network Elsevier Wavelet neural network, Dynamical structure Elsevier Adaptive control Elsevier Enthalten in Elsevier Science Eren, I. ELSEVIER Atomic collapse in graphene quantum dots in a magnetic field 2022 the official journal of the World Federation on Soft Computing (WFSC) Amsterdam [u.a.] (DE-627)ELV007866305 volume:13 year:2013 number:11 pages:4392-4402 extent:11 https://doi.org/10.1016/j.asoc.2013.06.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 33.00 Physik: Allgemeines VZ AR 13 2013 11 4392-4402 11 045F 004 |
allfieldsSound |
10.1016/j.asoc.2013.06.012 doi GBVA2013006000017.pica (DE-627)ELV027126145 (ELSEVIER)S1568-4946(13)00201-9 DE-627 ger DE-627 rakwb eng 004 004 DE-600 540 530 VZ 33.00 bkl Hsu, Chun-Fei verfasserin aut A self-evolving functional-linked wavelet neural network for control applications 2013 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a class of uncertain nonlinear systems. • The proposed ASFWNC system is applied to a chaotic dynamic and a DC motor. • Simulation and experimental results verify that the proposed ASFWNC system can achieve high-precision tracking performance. Neural control Elsevier Functional-linked neural network Elsevier Wavelet neural network, Dynamical structure Elsevier Adaptive control Elsevier Enthalten in Elsevier Science Eren, I. ELSEVIER Atomic collapse in graphene quantum dots in a magnetic field 2022 the official journal of the World Federation on Soft Computing (WFSC) Amsterdam [u.a.] (DE-627)ELV007866305 volume:13 year:2013 number:11 pages:4392-4402 extent:11 https://doi.org/10.1016/j.asoc.2013.06.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 33.00 Physik: Allgemeines VZ AR 13 2013 11 4392-4402 11 045F 004 |
language |
English |
source |
Enthalten in Atomic collapse in graphene quantum dots in a magnetic field Amsterdam [u.a.] volume:13 year:2013 number:11 pages:4392-4402 extent:11 |
sourceStr |
Enthalten in Atomic collapse in graphene quantum dots in a magnetic field Amsterdam [u.a.] volume:13 year:2013 number:11 pages:4392-4402 extent:11 |
format_phy_str_mv |
Article |
bklname |
Physik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Neural control Functional-linked neural network Wavelet neural network, Dynamical structure Adaptive control |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Atomic collapse in graphene quantum dots in a magnetic field |
authorswithroles_txt_mv |
Hsu, Chun-Fei @@aut@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
ELV007866305 |
dewey-sort |
14 |
id |
ELV027126145 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV027126145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623185426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.asoc.2013.06.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013006000017.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV027126145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1568-4946(13)00201-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsu, Chun-Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A self-evolving functional-linked wavelet neural network for control applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a class of uncertain nonlinear systems. • The proposed ASFWNC system is applied to a chaotic dynamic and a DC motor. • Simulation and experimental results verify that the proposed ASFWNC system can achieve high-precision tracking performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functional-linked neural network</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wavelet neural network, Dynamical structure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adaptive control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Eren, I. ELSEVIER</subfield><subfield code="t">Atomic collapse in graphene quantum dots in a magnetic field</subfield><subfield code="d">2022</subfield><subfield code="d">the official journal of the World Federation on Soft Computing (WFSC)</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007866305</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:4392-4402</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.asoc.2013.06.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2013</subfield><subfield code="e">11</subfield><subfield code="h">4392-4402</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Hsu, Chun-Fei |
spellingShingle |
Hsu, Chun-Fei ddc 004 ddc 540 bkl 33.00 Elsevier Neural control Elsevier Functional-linked neural network Elsevier Wavelet neural network, Dynamical structure Elsevier Adaptive control A self-evolving functional-linked wavelet neural network for control applications |
authorStr |
Hsu, Chun-Fei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007866305 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 540 - Chemistry & allied sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 540 530 VZ 33.00 bkl A self-evolving functional-linked wavelet neural network for control applications Neural control Elsevier Functional-linked neural network Elsevier Wavelet neural network, Dynamical structure Elsevier Adaptive control Elsevier |
topic |
ddc 004 ddc 540 bkl 33.00 Elsevier Neural control Elsevier Functional-linked neural network Elsevier Wavelet neural network, Dynamical structure Elsevier Adaptive control |
topic_unstemmed |
ddc 004 ddc 540 bkl 33.00 Elsevier Neural control Elsevier Functional-linked neural network Elsevier Wavelet neural network, Dynamical structure Elsevier Adaptive control |
topic_browse |
ddc 004 ddc 540 bkl 33.00 Elsevier Neural control Elsevier Functional-linked neural network Elsevier Wavelet neural network, Dynamical structure Elsevier Adaptive control |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Atomic collapse in graphene quantum dots in a magnetic field |
hierarchy_parent_id |
ELV007866305 |
dewey-tens |
000 - Computer science, knowledge & systems 540 - Chemistry 530 - Physics |
hierarchy_top_title |
Atomic collapse in graphene quantum dots in a magnetic field |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007866305 |
title |
A self-evolving functional-linked wavelet neural network for control applications |
ctrlnum |
(DE-627)ELV027126145 (ELSEVIER)S1568-4946(13)00201-9 |
title_full |
A self-evolving functional-linked wavelet neural network for control applications |
author_sort |
Hsu, Chun-Fei |
journal |
Atomic collapse in graphene quantum dots in a magnetic field |
journalStr |
Atomic collapse in graphene quantum dots in a magnetic field |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
zzz |
container_start_page |
4392 |
author_browse |
Hsu, Chun-Fei |
container_volume |
13 |
physical |
11 |
class |
004 004 DE-600 540 530 VZ 33.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hsu, Chun-Fei |
doi_str_mv |
10.1016/j.asoc.2013.06.012 |
dewey-full |
004 540 530 |
title_sort |
a self-evolving functional-linked wavelet neural network for control applications |
title_auth |
A self-evolving functional-linked wavelet neural network for control applications |
abstract |
Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a class of uncertain nonlinear systems. • The proposed ASFWNC system is applied to a chaotic dynamic and a DC motor. • Simulation and experimental results verify that the proposed ASFWNC system can achieve high-precision tracking performance. |
abstractGer |
Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a class of uncertain nonlinear systems. • The proposed ASFWNC system is applied to a chaotic dynamic and a DC motor. • Simulation and experimental results verify that the proposed ASFWNC system can achieve high-precision tracking performance. |
abstract_unstemmed |
Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a class of uncertain nonlinear systems. • The proposed ASFWNC system is applied to a chaotic dynamic and a DC motor. • Simulation and experimental results verify that the proposed ASFWNC system can achieve high-precision tracking performance. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
11 |
title_short |
A self-evolving functional-linked wavelet neural network for control applications |
url |
https://doi.org/10.1016/j.asoc.2013.06.012 |
remote_bool |
true |
ppnlink |
ELV007866305 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.asoc.2013.06.012 |
up_date |
2024-07-06T21:07:38.553Z |
_version_ |
1803865354198319104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV027126145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623185426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.asoc.2013.06.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013006000017.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV027126145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1568-4946(13)00201-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsu, Chun-Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A self-evolving functional-linked wavelet neural network for control applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights • The proposed self-evolving functional-linked wavelet neural network (SFWNN) can vary its structure dynamically to keep the prescribed approximation accuracy with a simple computation. • This paper presents an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) for a class of uncertain nonlinear systems. • The proposed ASFWNC system is applied to a chaotic dynamic and a DC motor. • Simulation and experimental results verify that the proposed ASFWNC system can achieve high-precision tracking performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functional-linked neural network</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wavelet neural network, Dynamical structure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adaptive control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Eren, I. ELSEVIER</subfield><subfield code="t">Atomic collapse in graphene quantum dots in a magnetic field</subfield><subfield code="d">2022</subfield><subfield code="d">the official journal of the World Federation on Soft Computing (WFSC)</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007866305</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:4392-4402</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.asoc.2013.06.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2013</subfield><subfield code="e">11</subfield><subfield code="h">4392-4402</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.4009285 |