Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration
Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic adm...
Ausführliche Beschreibung
Autor*in: |
Formiga, Fabio R. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: 537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up - Moschini, M. ELSEVIER, 2015, official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:173 ; year:2014 ; day:10 ; month:01 ; pages:132-139 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.jconrel.2013.10.034 |
---|
Katalog-ID: |
ELV027928020 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV027928020 | ||
003 | DE-627 | ||
005 | 20230625152649.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jconrel.2013.10.034 |2 doi | |
028 | 5 | 2 | |a GBVA2014005000024.pica |
035 | |a (DE-627)ELV027928020 | ||
035 | |a (ELSEVIER)S0168-3659(13)00883-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 540 |a 610 | |
082 | 0 | 4 | |a 540 |q DE-600 |
082 | 0 | 4 | |a 610 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 35.80 |2 bkl | ||
100 | 1 | |a Formiga, Fabio R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration |
264 | 1 | |c 2014transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. | ||
520 | |a Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. | ||
700 | 1 | |a Pelacho, Beatriz |4 oth | |
700 | 1 | |a Garbayo, Elisa |4 oth | |
700 | 1 | |a Imbuluzqueta, Izaskun |4 oth | |
700 | 1 | |a Díaz-Herráez, Paula |4 oth | |
700 | 1 | |a Abizanda, Gloria |4 oth | |
700 | 1 | |a Gavira, Juan J. |4 oth | |
700 | 1 | |a Simón-Yarza, Teresa |4 oth | |
700 | 1 | |a Albiasu, Edurne |4 oth | |
700 | 1 | |a Tamayo, Esther |4 oth | |
700 | 1 | |a Prósper, Felipe |4 oth | |
700 | 1 | |a Blanco-Prieto, Maria J. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Moschini, M. ELSEVIER |t 537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up |d 2015 |d official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems |g New York, NY [u.a.] |w (DE-627)ELV012920894 |
773 | 1 | 8 | |g volume:173 |g year:2014 |g day:10 |g month:01 |g pages:132-139 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jconrel.2013.10.034 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_105 | ||
936 | b | k | |a 35.80 |j Makromolekulare Chemie |q VZ |
951 | |a AR | ||
952 | |d 173 |j 2014 |b 10 |c 0110 |h 132-139 |g 8 | ||
953 | |2 045F |a 540 |
author_variant |
f r f fr frf |
---|---|
matchkey_str |
formigafabiorpelachobeatrizgarbayoelisai:2014----:otoldeieyfirbatrwhatraderglnfoboerdbeirprilsrmtsadarpiiaamoadaifrto |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
35.80 |
publishDate |
2014 |
allfields |
10.1016/j.jconrel.2013.10.034 doi GBVA2014005000024.pica (DE-627)ELV027928020 (ELSEVIER)S0168-3659(13)00883-3 DE-627 ger DE-627 rakwb eng 540 610 540 DE-600 610 DE-600 610 VZ 670 VZ 35.80 bkl Formiga, Fabio R. verfasserin aut Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. Pelacho, Beatriz oth Garbayo, Elisa oth Imbuluzqueta, Izaskun oth Díaz-Herráez, Paula oth Abizanda, Gloria oth Gavira, Juan J. oth Simón-Yarza, Teresa oth Albiasu, Edurne oth Tamayo, Esther oth Prósper, Felipe oth Blanco-Prieto, Maria J. oth Enthalten in Elsevier Moschini, M. ELSEVIER 537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up 2015 official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems New York, NY [u.a.] (DE-627)ELV012920894 volume:173 year:2014 day:10 month:01 pages:132-139 extent:8 https://doi.org/10.1016/j.jconrel.2013.10.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 GBV_ILN_105 35.80 Makromolekulare Chemie VZ AR 173 2014 10 0110 132-139 8 045F 540 |
spelling |
10.1016/j.jconrel.2013.10.034 doi GBVA2014005000024.pica (DE-627)ELV027928020 (ELSEVIER)S0168-3659(13)00883-3 DE-627 ger DE-627 rakwb eng 540 610 540 DE-600 610 DE-600 610 VZ 670 VZ 35.80 bkl Formiga, Fabio R. verfasserin aut Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. Pelacho, Beatriz oth Garbayo, Elisa oth Imbuluzqueta, Izaskun oth Díaz-Herráez, Paula oth Abizanda, Gloria oth Gavira, Juan J. oth Simón-Yarza, Teresa oth Albiasu, Edurne oth Tamayo, Esther oth Prósper, Felipe oth Blanco-Prieto, Maria J. oth Enthalten in Elsevier Moschini, M. ELSEVIER 537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up 2015 official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems New York, NY [u.a.] (DE-627)ELV012920894 volume:173 year:2014 day:10 month:01 pages:132-139 extent:8 https://doi.org/10.1016/j.jconrel.2013.10.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 GBV_ILN_105 35.80 Makromolekulare Chemie VZ AR 173 2014 10 0110 132-139 8 045F 540 |
allfields_unstemmed |
10.1016/j.jconrel.2013.10.034 doi GBVA2014005000024.pica (DE-627)ELV027928020 (ELSEVIER)S0168-3659(13)00883-3 DE-627 ger DE-627 rakwb eng 540 610 540 DE-600 610 DE-600 610 VZ 670 VZ 35.80 bkl Formiga, Fabio R. verfasserin aut Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. Pelacho, Beatriz oth Garbayo, Elisa oth Imbuluzqueta, Izaskun oth Díaz-Herráez, Paula oth Abizanda, Gloria oth Gavira, Juan J. oth Simón-Yarza, Teresa oth Albiasu, Edurne oth Tamayo, Esther oth Prósper, Felipe oth Blanco-Prieto, Maria J. oth Enthalten in Elsevier Moschini, M. ELSEVIER 537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up 2015 official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems New York, NY [u.a.] (DE-627)ELV012920894 volume:173 year:2014 day:10 month:01 pages:132-139 extent:8 https://doi.org/10.1016/j.jconrel.2013.10.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 GBV_ILN_105 35.80 Makromolekulare Chemie VZ AR 173 2014 10 0110 132-139 8 045F 540 |
allfieldsGer |
10.1016/j.jconrel.2013.10.034 doi GBVA2014005000024.pica (DE-627)ELV027928020 (ELSEVIER)S0168-3659(13)00883-3 DE-627 ger DE-627 rakwb eng 540 610 540 DE-600 610 DE-600 610 VZ 670 VZ 35.80 bkl Formiga, Fabio R. verfasserin aut Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. Pelacho, Beatriz oth Garbayo, Elisa oth Imbuluzqueta, Izaskun oth Díaz-Herráez, Paula oth Abizanda, Gloria oth Gavira, Juan J. oth Simón-Yarza, Teresa oth Albiasu, Edurne oth Tamayo, Esther oth Prósper, Felipe oth Blanco-Prieto, Maria J. oth Enthalten in Elsevier Moschini, M. ELSEVIER 537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up 2015 official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems New York, NY [u.a.] (DE-627)ELV012920894 volume:173 year:2014 day:10 month:01 pages:132-139 extent:8 https://doi.org/10.1016/j.jconrel.2013.10.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 GBV_ILN_105 35.80 Makromolekulare Chemie VZ AR 173 2014 10 0110 132-139 8 045F 540 |
allfieldsSound |
10.1016/j.jconrel.2013.10.034 doi GBVA2014005000024.pica (DE-627)ELV027928020 (ELSEVIER)S0168-3659(13)00883-3 DE-627 ger DE-627 rakwb eng 540 610 540 DE-600 610 DE-600 610 VZ 670 VZ 35.80 bkl Formiga, Fabio R. verfasserin aut Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. Pelacho, Beatriz oth Garbayo, Elisa oth Imbuluzqueta, Izaskun oth Díaz-Herráez, Paula oth Abizanda, Gloria oth Gavira, Juan J. oth Simón-Yarza, Teresa oth Albiasu, Edurne oth Tamayo, Esther oth Prósper, Felipe oth Blanco-Prieto, Maria J. oth Enthalten in Elsevier Moschini, M. ELSEVIER 537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up 2015 official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems New York, NY [u.a.] (DE-627)ELV012920894 volume:173 year:2014 day:10 month:01 pages:132-139 extent:8 https://doi.org/10.1016/j.jconrel.2013.10.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 GBV_ILN_105 35.80 Makromolekulare Chemie VZ AR 173 2014 10 0110 132-139 8 045F 540 |
language |
English |
source |
Enthalten in 537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up New York, NY [u.a.] volume:173 year:2014 day:10 month:01 pages:132-139 extent:8 |
sourceStr |
Enthalten in 537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up New York, NY [u.a.] volume:173 year:2014 day:10 month:01 pages:132-139 extent:8 |
format_phy_str_mv |
Article |
bklname |
Makromolekulare Chemie |
institution |
findex.gbv.de |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up |
authorswithroles_txt_mv |
Formiga, Fabio R. @@aut@@ Pelacho, Beatriz @@oth@@ Garbayo, Elisa @@oth@@ Imbuluzqueta, Izaskun @@oth@@ Díaz-Herráez, Paula @@oth@@ Abizanda, Gloria @@oth@@ Gavira, Juan J. @@oth@@ Simón-Yarza, Teresa @@oth@@ Albiasu, Edurne @@oth@@ Tamayo, Esther @@oth@@ Prósper, Felipe @@oth@@ Blanco-Prieto, Maria J. @@oth@@ |
publishDateDaySort_date |
2014-01-10T00:00:00Z |
hierarchy_top_id |
ELV012920894 |
dewey-sort |
3540 |
id |
ELV027928020 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV027928020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625152649.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jconrel.2013.10.034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014005000024.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV027928020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-3659(13)00883-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Formiga, Fabio R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pelacho, Beatriz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garbayo, Elisa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Imbuluzqueta, Izaskun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Díaz-Herráez, Paula</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abizanda, Gloria</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gavira, Juan J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simón-Yarza, Teresa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albiasu, Edurne</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tamayo, Esther</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prósper, Felipe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blanco-Prieto, Maria J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Moschini, M. ELSEVIER</subfield><subfield code="t">537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up</subfield><subfield code="d">2015</subfield><subfield code="d">official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV012920894</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:173</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:10</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:132-139</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jconrel.2013.10.034</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="j">Makromolekulare Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">173</subfield><subfield code="j">2014</subfield><subfield code="b">10</subfield><subfield code="c">0110</subfield><subfield code="h">132-139</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
author |
Formiga, Fabio R. |
spellingShingle |
Formiga, Fabio R. ddc 540 ddc 610 ddc 670 bkl 35.80 Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration |
authorStr |
Formiga, Fabio R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012920894 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 610 - Medicine & health 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 610 540 DE-600 610 DE-600 610 VZ 670 VZ 35.80 bkl Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration |
topic |
ddc 540 ddc 610 ddc 670 bkl 35.80 |
topic_unstemmed |
ddc 540 ddc 610 ddc 670 bkl 35.80 |
topic_browse |
ddc 540 ddc 610 ddc 670 bkl 35.80 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
b p bp e g eg i i ii p d h pdh g a ga j j g jj jjg t s y tsy e a ea e t et f p fp m j b p mjb mjbp |
hierarchy_parent_title |
537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up |
hierarchy_parent_id |
ELV012920894 |
dewey-tens |
540 - Chemistry 610 - Medicine & health 670 - Manufacturing |
hierarchy_top_title |
537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012920894 |
title |
Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration |
ctrlnum |
(DE-627)ELV027928020 (ELSEVIER)S0168-3659(13)00883-3 |
title_full |
Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration |
author_sort |
Formiga, Fabio R. |
journal |
537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up |
journalStr |
537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
132 |
author_browse |
Formiga, Fabio R. |
container_volume |
173 |
physical |
8 |
class |
540 610 540 DE-600 610 DE-600 610 VZ 670 VZ 35.80 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Formiga, Fabio R. |
doi_str_mv |
10.1016/j.jconrel.2013.10.034 |
dewey-full |
540 610 670 |
title_sort |
controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration |
title_auth |
Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration |
abstract |
Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. |
abstractGer |
Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. |
abstract_unstemmed |
Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_22 GBV_ILN_40 GBV_ILN_105 |
title_short |
Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration |
url |
https://doi.org/10.1016/j.jconrel.2013.10.034 |
remote_bool |
true |
author2 |
Pelacho, Beatriz Garbayo, Elisa Imbuluzqueta, Izaskun Díaz-Herráez, Paula Abizanda, Gloria Gavira, Juan J. Simón-Yarza, Teresa Albiasu, Edurne Tamayo, Esther Prósper, Felipe Blanco-Prieto, Maria J. |
author2Str |
Pelacho, Beatriz Garbayo, Elisa Imbuluzqueta, Izaskun Díaz-Herráez, Paula Abizanda, Gloria Gavira, Juan J. Simón-Yarza, Teresa Albiasu, Edurne Tamayo, Esther Prósper, Felipe Blanco-Prieto, Maria J. |
ppnlink |
ELV012920894 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.jconrel.2013.10.034 |
up_date |
2024-07-06T17:29:12.340Z |
_version_ |
1803851611338964992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV027928020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625152649.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jconrel.2013.10.034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014005000024.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV027928020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-3659(13)00883-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Formiga, Fabio R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague–Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pelacho, Beatriz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garbayo, Elisa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Imbuluzqueta, Izaskun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Díaz-Herráez, Paula</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abizanda, Gloria</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gavira, Juan J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simón-Yarza, Teresa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albiasu, Edurne</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tamayo, Esther</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prósper, Felipe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blanco-Prieto, Maria J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Moschini, M. ELSEVIER</subfield><subfield code="t">537 Early, intermediate and late recurrence after radical cystectomy due to bladder cancer: The necessity of a tailored follow up</subfield><subfield code="d">2015</subfield><subfield code="d">official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV012920894</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:173</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:10</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:132-139</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jconrel.2013.10.034</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="j">Makromolekulare Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">173</subfield><subfield code="j">2014</subfield><subfield code="b">10</subfield><subfield code="c">0110</subfield><subfield code="h">132-139</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
score |
7.401025 |