Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone
Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to...
Ausführliche Beschreibung
Autor*in: |
Wang, Yongjing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
5 |
---|
Übergeordnetes Werk: |
Enthalten in: The development of a computational platform to design and simulate on-board hydrogen storage systems - Mazzucco, Andrea ELSEVIER, 2017transfer abstract, [Amsterdam] |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2014 ; number:3 ; day:1 ; month:03 ; pages:550-554 ; extent:5 |
Links: |
---|
DOI / URN: |
10.1016/S1001-0742(13)60409-X |
---|
Katalog-ID: |
ELV028298381 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV028298381 | ||
003 | DE-627 | ||
005 | 20230625154650.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/S1001-0742(13)60409-X |2 doi | |
028 | 5 | 2 | |a GBVA2014017000005.pica |
035 | |a (DE-627)ELV028298381 | ||
035 | |a (ELSEVIER)S1001-0742(13)60409-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 690 | |
082 | 0 | 4 | |a 690 |q DE-600 |
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Wang, Yongjing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone |
264 | 1 | |c 2014transfer abstract | |
300 | |a 5 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. | ||
520 | |a Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. | ||
650 | 7 | |a septic/swampy odor |2 Elsevier | |
650 | 7 | |a BrO− 3 suppression |2 Elsevier | |
650 | 7 | |a H2O2 |2 Elsevier | |
650 | 7 | |a flavor profile analysis |2 Elsevier | |
650 | 7 | |a ozonation |2 Elsevier | |
700 | 1 | |a Yu, Jianwei |4 oth | |
700 | 1 | |a Zhang, Dong |4 oth | |
700 | 1 | |a Yang, Min |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Mazzucco, Andrea ELSEVIER |t The development of a computational platform to design and simulate on-board hydrogen storage systems |d 2017transfer abstract |g [Amsterdam] |w (DE-627)ELV015065863 |
773 | 1 | 8 | |g volume:26 |g year:2014 |g number:3 |g day:1 |g month:03 |g pages:550-554 |g extent:5 |
856 | 4 | 0 | |u https://doi.org/10.1016/S1001-0742(13)60409-X |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_252 | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 26 |j 2014 |e 3 |b 1 |c 0301 |h 550-554 |g 5 | ||
953 | |2 045F |a 690 |
author_variant |
y w yw |
---|---|
matchkey_str |
wangyongjingyujianweizhangdongyangmin:2014----:diinfyrgneoieoteiutnosotooboaenoodrnavnedi |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
44.94 |
publishDate |
2014 |
allfields |
10.1016/S1001-0742(13)60409-X doi GBVA2014017000005.pica (DE-627)ELV028298381 (ELSEVIER)S1001-0742(13)60409-X DE-627 ger DE-627 rakwb eng 690 690 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl Wang, Yongjing verfasserin aut Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone 2014transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. septic/swampy odor Elsevier BrO− 3 suppression Elsevier H2O2 Elsevier flavor profile analysis Elsevier ozonation Elsevier Yu, Jianwei oth Zhang, Dong oth Yang, Min oth Enthalten in Elsevier Mazzucco, Andrea ELSEVIER The development of a computational platform to design and simulate on-board hydrogen storage systems 2017transfer abstract [Amsterdam] (DE-627)ELV015065863 volume:26 year:2014 number:3 day:1 month:03 pages:550-554 extent:5 https://doi.org/10.1016/S1001-0742(13)60409-X Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 26 2014 3 1 0301 550-554 5 045F 690 |
spelling |
10.1016/S1001-0742(13)60409-X doi GBVA2014017000005.pica (DE-627)ELV028298381 (ELSEVIER)S1001-0742(13)60409-X DE-627 ger DE-627 rakwb eng 690 690 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl Wang, Yongjing verfasserin aut Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone 2014transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. septic/swampy odor Elsevier BrO− 3 suppression Elsevier H2O2 Elsevier flavor profile analysis Elsevier ozonation Elsevier Yu, Jianwei oth Zhang, Dong oth Yang, Min oth Enthalten in Elsevier Mazzucco, Andrea ELSEVIER The development of a computational platform to design and simulate on-board hydrogen storage systems 2017transfer abstract [Amsterdam] (DE-627)ELV015065863 volume:26 year:2014 number:3 day:1 month:03 pages:550-554 extent:5 https://doi.org/10.1016/S1001-0742(13)60409-X Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 26 2014 3 1 0301 550-554 5 045F 690 |
allfields_unstemmed |
10.1016/S1001-0742(13)60409-X doi GBVA2014017000005.pica (DE-627)ELV028298381 (ELSEVIER)S1001-0742(13)60409-X DE-627 ger DE-627 rakwb eng 690 690 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl Wang, Yongjing verfasserin aut Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone 2014transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. septic/swampy odor Elsevier BrO− 3 suppression Elsevier H2O2 Elsevier flavor profile analysis Elsevier ozonation Elsevier Yu, Jianwei oth Zhang, Dong oth Yang, Min oth Enthalten in Elsevier Mazzucco, Andrea ELSEVIER The development of a computational platform to design and simulate on-board hydrogen storage systems 2017transfer abstract [Amsterdam] (DE-627)ELV015065863 volume:26 year:2014 number:3 day:1 month:03 pages:550-554 extent:5 https://doi.org/10.1016/S1001-0742(13)60409-X Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 26 2014 3 1 0301 550-554 5 045F 690 |
allfieldsGer |
10.1016/S1001-0742(13)60409-X doi GBVA2014017000005.pica (DE-627)ELV028298381 (ELSEVIER)S1001-0742(13)60409-X DE-627 ger DE-627 rakwb eng 690 690 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl Wang, Yongjing verfasserin aut Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone 2014transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. septic/swampy odor Elsevier BrO− 3 suppression Elsevier H2O2 Elsevier flavor profile analysis Elsevier ozonation Elsevier Yu, Jianwei oth Zhang, Dong oth Yang, Min oth Enthalten in Elsevier Mazzucco, Andrea ELSEVIER The development of a computational platform to design and simulate on-board hydrogen storage systems 2017transfer abstract [Amsterdam] (DE-627)ELV015065863 volume:26 year:2014 number:3 day:1 month:03 pages:550-554 extent:5 https://doi.org/10.1016/S1001-0742(13)60409-X Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 26 2014 3 1 0301 550-554 5 045F 690 |
allfieldsSound |
10.1016/S1001-0742(13)60409-X doi GBVA2014017000005.pica (DE-627)ELV028298381 (ELSEVIER)S1001-0742(13)60409-X DE-627 ger DE-627 rakwb eng 690 690 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl Wang, Yongjing verfasserin aut Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone 2014transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. septic/swampy odor Elsevier BrO− 3 suppression Elsevier H2O2 Elsevier flavor profile analysis Elsevier ozonation Elsevier Yu, Jianwei oth Zhang, Dong oth Yang, Min oth Enthalten in Elsevier Mazzucco, Andrea ELSEVIER The development of a computational platform to design and simulate on-board hydrogen storage systems 2017transfer abstract [Amsterdam] (DE-627)ELV015065863 volume:26 year:2014 number:3 day:1 month:03 pages:550-554 extent:5 https://doi.org/10.1016/S1001-0742(13)60409-X Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 26 2014 3 1 0301 550-554 5 045F 690 |
language |
English |
source |
Enthalten in The development of a computational platform to design and simulate on-board hydrogen storage systems [Amsterdam] volume:26 year:2014 number:3 day:1 month:03 pages:550-554 extent:5 |
sourceStr |
Enthalten in The development of a computational platform to design and simulate on-board hydrogen storage systems [Amsterdam] volume:26 year:2014 number:3 day:1 month:03 pages:550-554 extent:5 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
septic/swampy odor BrO− 3 suppression H2O2 flavor profile analysis ozonation |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
The development of a computational platform to design and simulate on-board hydrogen storage systems |
authorswithroles_txt_mv |
Wang, Yongjing @@aut@@ Yu, Jianwei @@oth@@ Zhang, Dong @@oth@@ Yang, Min @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV015065863 |
dewey-sort |
3690 |
id |
ELV028298381 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV028298381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625154650.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S1001-0742(13)60409-X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014017000005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV028298381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1001-0742(13)60409-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yongjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">septic/swampy odor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BrO− 3 suppression</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">H2O2</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">flavor profile analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ozonation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Jianwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Dong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Mazzucco, Andrea ELSEVIER</subfield><subfield code="t">The development of a computational platform to design and simulate on-board hydrogen storage systems</subfield><subfield code="d">2017transfer abstract</subfield><subfield code="g">[Amsterdam]</subfield><subfield code="w">(DE-627)ELV015065863</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:550-554</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S1001-0742(13)60409-X</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">550-554</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
author |
Wang, Yongjing |
spellingShingle |
Wang, Yongjing ddc 690 ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier septic/swampy odor Elsevier BrO− 3 suppression Elsevier H2O2 Elsevier flavor profile analysis Elsevier ozonation Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone |
authorStr |
Wang, Yongjing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV015065863 |
format |
electronic Article |
dewey-ones |
690 - Buildings 660 - Chemical engineering 620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 690 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone septic/swampy odor Elsevier BrO− 3 suppression Elsevier H2O2 Elsevier flavor profile analysis Elsevier ozonation Elsevier |
topic |
ddc 690 ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier septic/swampy odor Elsevier BrO− 3 suppression Elsevier H2O2 Elsevier flavor profile analysis Elsevier ozonation |
topic_unstemmed |
ddc 690 ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier septic/swampy odor Elsevier BrO− 3 suppression Elsevier H2O2 Elsevier flavor profile analysis Elsevier ozonation |
topic_browse |
ddc 690 ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier septic/swampy odor Elsevier BrO− 3 suppression Elsevier H2O2 Elsevier flavor profile analysis Elsevier ozonation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j y jy d z dz m y my |
hierarchy_parent_title |
The development of a computational platform to design and simulate on-board hydrogen storage systems |
hierarchy_parent_id |
ELV015065863 |
dewey-tens |
690 - Building & construction 660 - Chemical engineering 620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
The development of a computational platform to design and simulate on-board hydrogen storage systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV015065863 |
title |
Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone |
ctrlnum |
(DE-627)ELV028298381 (ELSEVIER)S1001-0742(13)60409-X |
title_full |
Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone |
author_sort |
Wang, Yongjing |
journal |
The development of a computational platform to design and simulate on-board hydrogen storage systems |
journalStr |
The development of a computational platform to design and simulate on-board hydrogen storage systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
550 |
author_browse |
Wang, Yongjing |
container_volume |
26 |
physical |
5 |
class |
690 690 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Yongjing |
doi_str_mv |
10.1016/S1001-0742(13)60409-X |
dewey-full |
690 660 620 610 |
title_sort |
addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone |
title_auth |
Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone |
abstract |
Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. |
abstractGer |
Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. |
abstract_unstemmed |
Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 |
container_issue |
3 |
title_short |
Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone |
url |
https://doi.org/10.1016/S1001-0742(13)60409-X |
remote_bool |
true |
author2 |
Yu, Jianwei Zhang, Dong Yang, Min |
author2Str |
Yu, Jianwei Zhang, Dong Yang, Min |
ppnlink |
ELV015065863 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/S1001-0742(13)60409-X |
up_date |
2024-07-06T18:27:02.875Z |
_version_ |
1803855250457624576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV028298381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625154650.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S1001-0742(13)60409-X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014017000005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV028298381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1001-0742(13)60409-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yongjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3-BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">septic/swampy odor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BrO− 3 suppression</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">H2O2</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">flavor profile analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ozonation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Jianwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Dong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Mazzucco, Andrea ELSEVIER</subfield><subfield code="t">The development of a computational platform to design and simulate on-board hydrogen storage systems</subfield><subfield code="d">2017transfer abstract</subfield><subfield code="g">[Amsterdam]</subfield><subfield code="w">(DE-627)ELV015065863</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:550-554</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S1001-0742(13)60409-X</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">550-554</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
score |
7.402261 |