Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR
Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbe...
Ausführliche Beschreibung
Autor*in: |
Zhang, Qingyuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution - Abdullah, N. ELSEVIER, 2016, an interdisciplinary journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:153 ; year:2014 ; pages:1-6 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.rse.2014.07.012 |
---|
Katalog-ID: |
ELV02855194X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV02855194X | ||
003 | DE-627 | ||
005 | 20230625161049.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.rse.2014.07.012 |2 doi | |
028 | 5 | 2 | |a GBVA2014023000014.pica |
035 | |a (DE-627)ELV02855194X | ||
035 | |a (ELSEVIER)S0034-4257(14)00260-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 050 |a 550 | |
082 | 0 | 4 | |a 050 |q DE-600 |
082 | 0 | 4 | |a 550 |q DE-600 |
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 530 |a 600 |a 670 |q VZ |
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Zhang, Qingyuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR |
264 | 1 | |c 2014transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. | ||
520 | |a Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. | ||
700 | 1 | |a Cheng, Yen-Ben |4 oth | |
700 | 1 | |a Lyapustin, Alexei I. |4 oth | |
700 | 1 | |a Wang, Yujie |4 oth | |
700 | 1 | |a Gao, Feng |4 oth | |
700 | 1 | |a Suyker, Andrew |4 oth | |
700 | 1 | |a Verma, Shashi |4 oth | |
700 | 1 | |a Middleton, Elizabeth M. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Abdullah, N. ELSEVIER |t Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |d 2016 |d an interdisciplinary journal |g Amsterdam [u.a.] |w (DE-627)ELV013680773 |
773 | 1 | 8 | |g volume:153 |g year:2014 |g pages:1-6 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.rse.2014.07.012 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_40 | ||
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 153 |j 2014 |h 1-6 |g 6 | ||
953 | |2 045F |a 050 |
author_variant |
q z qz |
---|---|
matchkey_str |
zhangqingyuanchengyenbenlyapustinalexeii:2014----:siainfrprspiayrdcinpfprh |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
51.00 |
publishDate |
2014 |
allfields |
10.1016/j.rse.2014.07.012 doi GBVA2014023000014.pica (DE-627)ELV02855194X (ELSEVIER)S0034-4257(14)00260-0 DE-627 ger DE-627 rakwb eng 050 550 050 DE-600 550 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Zhang, Qingyuan verfasserin aut Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. Cheng, Yen-Ben oth Lyapustin, Alexei I. oth Wang, Yujie oth Gao, Feng oth Suyker, Andrew oth Verma, Shashi oth Middleton, Elizabeth M. oth Enthalten in Elsevier Science Abdullah, N. ELSEVIER Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution 2016 an interdisciplinary journal Amsterdam [u.a.] (DE-627)ELV013680773 volume:153 year:2014 pages:1-6 extent:6 https://doi.org/10.1016/j.rse.2014.07.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 153 2014 1-6 6 045F 050 |
spelling |
10.1016/j.rse.2014.07.012 doi GBVA2014023000014.pica (DE-627)ELV02855194X (ELSEVIER)S0034-4257(14)00260-0 DE-627 ger DE-627 rakwb eng 050 550 050 DE-600 550 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Zhang, Qingyuan verfasserin aut Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. Cheng, Yen-Ben oth Lyapustin, Alexei I. oth Wang, Yujie oth Gao, Feng oth Suyker, Andrew oth Verma, Shashi oth Middleton, Elizabeth M. oth Enthalten in Elsevier Science Abdullah, N. ELSEVIER Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution 2016 an interdisciplinary journal Amsterdam [u.a.] (DE-627)ELV013680773 volume:153 year:2014 pages:1-6 extent:6 https://doi.org/10.1016/j.rse.2014.07.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 153 2014 1-6 6 045F 050 |
allfields_unstemmed |
10.1016/j.rse.2014.07.012 doi GBVA2014023000014.pica (DE-627)ELV02855194X (ELSEVIER)S0034-4257(14)00260-0 DE-627 ger DE-627 rakwb eng 050 550 050 DE-600 550 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Zhang, Qingyuan verfasserin aut Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. Cheng, Yen-Ben oth Lyapustin, Alexei I. oth Wang, Yujie oth Gao, Feng oth Suyker, Andrew oth Verma, Shashi oth Middleton, Elizabeth M. oth Enthalten in Elsevier Science Abdullah, N. ELSEVIER Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution 2016 an interdisciplinary journal Amsterdam [u.a.] (DE-627)ELV013680773 volume:153 year:2014 pages:1-6 extent:6 https://doi.org/10.1016/j.rse.2014.07.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 153 2014 1-6 6 045F 050 |
allfieldsGer |
10.1016/j.rse.2014.07.012 doi GBVA2014023000014.pica (DE-627)ELV02855194X (ELSEVIER)S0034-4257(14)00260-0 DE-627 ger DE-627 rakwb eng 050 550 050 DE-600 550 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Zhang, Qingyuan verfasserin aut Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. Cheng, Yen-Ben oth Lyapustin, Alexei I. oth Wang, Yujie oth Gao, Feng oth Suyker, Andrew oth Verma, Shashi oth Middleton, Elizabeth M. oth Enthalten in Elsevier Science Abdullah, N. ELSEVIER Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution 2016 an interdisciplinary journal Amsterdam [u.a.] (DE-627)ELV013680773 volume:153 year:2014 pages:1-6 extent:6 https://doi.org/10.1016/j.rse.2014.07.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 153 2014 1-6 6 045F 050 |
allfieldsSound |
10.1016/j.rse.2014.07.012 doi GBVA2014023000014.pica (DE-627)ELV02855194X (ELSEVIER)S0034-4257(14)00260-0 DE-627 ger DE-627 rakwb eng 050 550 050 DE-600 550 DE-600 660 VZ 660 VZ 530 600 670 VZ 51.00 bkl Zhang, Qingyuan verfasserin aut Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. Cheng, Yen-Ben oth Lyapustin, Alexei I. oth Wang, Yujie oth Gao, Feng oth Suyker, Andrew oth Verma, Shashi oth Middleton, Elizabeth M. oth Enthalten in Elsevier Science Abdullah, N. ELSEVIER Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution 2016 an interdisciplinary journal Amsterdam [u.a.] (DE-627)ELV013680773 volume:153 year:2014 pages:1-6 extent:6 https://doi.org/10.1016/j.rse.2014.07.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 153 2014 1-6 6 045F 050 |
language |
English |
source |
Enthalten in Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution Amsterdam [u.a.] volume:153 year:2014 pages:1-6 extent:6 |
sourceStr |
Enthalten in Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution Amsterdam [u.a.] volume:153 year:2014 pages:1-6 extent:6 |
format_phy_str_mv |
Article |
bklname |
Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
dewey-raw |
050 |
isfreeaccess_bool |
false |
container_title |
Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |
authorswithroles_txt_mv |
Zhang, Qingyuan @@aut@@ Cheng, Yen-Ben @@oth@@ Lyapustin, Alexei I. @@oth@@ Wang, Yujie @@oth@@ Gao, Feng @@oth@@ Suyker, Andrew @@oth@@ Verma, Shashi @@oth@@ Middleton, Elizabeth M. @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV013680773 |
dewey-sort |
250 |
id |
ELV02855194X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV02855194X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625161049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rse.2014.07.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014023000014.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV02855194X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0034-4257(14)00260-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">050</subfield><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Qingyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Yen-Ben</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lyapustin, Alexei I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yujie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Feng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suyker, Andrew</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verma, Shashi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Middleton, Elizabeth M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Abdullah, N. ELSEVIER</subfield><subfield code="t">Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution</subfield><subfield code="d">2016</subfield><subfield code="d">an interdisciplinary journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013680773</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:153</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:1-6</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.rse.2014.07.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">153</subfield><subfield code="j">2014</subfield><subfield code="h">1-6</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">050</subfield></datafield></record></collection>
|
author |
Zhang, Qingyuan |
spellingShingle |
Zhang, Qingyuan ddc 050 ddc 550 ddc 660 ddc 530 bkl 51.00 Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR |
authorStr |
Zhang, Qingyuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013680773 |
format |
electronic Article |
dewey-ones |
050 - General serial publications 550 - Earth sciences 660 - Chemical engineering 530 - Physics 600 - Technology 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
050 550 050 DE-600 550 DE-600 660 VZ 530 600 670 VZ 51.00 bkl Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR |
topic |
ddc 050 ddc 550 ddc 660 ddc 530 bkl 51.00 |
topic_unstemmed |
ddc 050 ddc 550 ddc 660 ddc 530 bkl 51.00 |
topic_browse |
ddc 050 ddc 550 ddc 660 ddc 530 bkl 51.00 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y b c ybc a i l ai ail y w yw f g fg a s as s v sv e m m em emm |
hierarchy_parent_title |
Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |
hierarchy_parent_id |
ELV013680773 |
dewey-tens |
050 - Magazines, journals & serials 550 - Earth sciences & geology 660 - Chemical engineering 530 - Physics 600 - Technology 670 - Manufacturing |
hierarchy_top_title |
Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013680773 |
title |
Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR |
ctrlnum |
(DE-627)ELV02855194X (ELSEVIER)S0034-4257(14)00260-0 |
title_full |
Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR |
author_sort |
Zhang, Qingyuan |
journal |
Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |
journalStr |
Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
author_browse |
Zhang, Qingyuan |
container_volume |
153 |
physical |
6 |
class |
050 550 050 DE-600 550 DE-600 660 VZ 530 600 670 VZ 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Qingyuan |
doi_str_mv |
10.1016/j.rse.2014.07.012 |
dewey-full |
050 550 660 530 600 670 |
title_sort |
estimation of crop gross primary production (gpp): faparchl versus mod15a2 fpar |
title_auth |
Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR |
abstract |
Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. |
abstractGer |
Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. |
abstract_unstemmed |
Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 |
title_short |
Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR |
url |
https://doi.org/10.1016/j.rse.2014.07.012 |
remote_bool |
true |
author2 |
Cheng, Yen-Ben Lyapustin, Alexei I. Wang, Yujie Gao, Feng Suyker, Andrew Verma, Shashi Middleton, Elizabeth M. |
author2Str |
Cheng, Yen-Ben Lyapustin, Alexei I. Wang, Yujie Gao, Feng Suyker, Andrew Verma, Shashi Middleton, Elizabeth M. |
ppnlink |
ELV013680773 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.rse.2014.07.012 |
up_date |
2024-07-06T19:06:56.730Z |
_version_ |
1803857760596525056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV02855194X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625161049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rse.2014.07.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014023000014.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV02855194X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0034-4257(14)00260-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">050</subfield><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Qingyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photosynthesis (PSN) is a pigment level process in which antenna pigments (predominately chlorophylls) in chloroplasts absorb photosynthetically active radiation (PAR) for the photochemical process. PAR absorbed by foliar non-photosynthetic components is not used for PSN. The fraction of PAR absorbed (fAPAR) by a canopy/vegetation (i.e., fAPARcanopy) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) images, referred to as MOD15A2 FPAR, has been used to compute absorbed PAR (APAR) for PSN (APARPSN) which is utilized to produce the standard MODIS gross primary production (GPP) product, referred to as MOD17A2 GPP. In this study, the fraction of PAR absorbed by chlorophyll throughout the canopy (fAPARchl) was retrieved from MODIS images for three AmeriFlux crop fields in Nebraska. There are few studies in the literature that compare the performance of MOD15A2 FPAR versus fAPARchl in GPP estimation. In our study MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12–2.37gCm−2 d−1.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Yen-Ben</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lyapustin, Alexei I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yujie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Feng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suyker, Andrew</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verma, Shashi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Middleton, Elizabeth M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Abdullah, N. ELSEVIER</subfield><subfield code="t">Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution</subfield><subfield code="d">2016</subfield><subfield code="d">an interdisciplinary journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013680773</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:153</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:1-6</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.rse.2014.07.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">153</subfield><subfield code="j">2014</subfield><subfield code="h">1-6</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">050</subfield></datafield></record></collection>
|
score |
7.3999033 |