The Heavy Photon Search test detector
The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was cons...
Ausführliche Beschreibung
Autor*in: |
Battaglieri, M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol - Ide, C.V. ELSEVIER, 2017, a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:777 ; year:2015 ; day:21 ; month:03 ; pages:91-101 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.nima.2014.12.017 |
---|
Katalog-ID: |
ELV028778715 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV028778715 | ||
003 | DE-627 | ||
005 | 20230625162933.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nima.2014.12.017 |2 doi | |
028 | 5 | 2 | |a GBV00000000000207A.pica |
035 | |a (DE-627)ELV028778715 | ||
035 | |a (ELSEVIER)S0168-9002(14)01458-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Battaglieri, M. |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Heavy Photon Search test detector |
264 | 1 | |c 2015transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. | ||
520 | |a The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. | ||
650 | 7 | |a Tracking |2 Elsevier | |
650 | 7 | |a Heavy photon |2 Elsevier | |
650 | 7 | |a Dark photon |2 Elsevier | |
650 | 7 | |a Silicon |2 Elsevier | |
650 | 7 | |a Electromagnetic calorimeter |2 Elsevier | |
650 | 7 | |a Vertexing |2 Elsevier | |
700 | 1 | |a Boyarinov, S. |4 oth | |
700 | 1 | |a Bueltmann, S. |4 oth | |
700 | 1 | |a Burkert, V. |4 oth | |
700 | 1 | |a Celentano, A. |4 oth | |
700 | 1 | |a Charles, G. |4 oth | |
700 | 1 | |a Cooper, W. |4 oth | |
700 | 1 | |a Cuevas, C. |4 oth | |
700 | 1 | |a Dashyan, N. |4 oth | |
700 | 1 | |a DeVita, R. |4 oth | |
700 | 1 | |a Desnault, C. |4 oth | |
700 | 1 | |a Deur, A. |4 oth | |
700 | 1 | |a Egiyan, H. |4 oth | |
700 | 1 | |a Elouadrhiri, L. |4 oth | |
700 | 1 | |a Essig, R. |4 oth | |
700 | 1 | |a Fadeyev, V. |4 oth | |
700 | 1 | |a Field, C. |4 oth | |
700 | 1 | |a Freyberger, A. |4 oth | |
700 | 1 | |a Gershtein, Y. |4 oth | |
700 | 1 | |a Gevorgyan, N. |4 oth | |
700 | 1 | |a Girod, F.-X. |4 oth | |
700 | 1 | |a Graf, N. |4 oth | |
700 | 1 | |a Graham, M. |4 oth | |
700 | 1 | |a Griffioen, K. |4 oth | |
700 | 1 | |a Grillo, A. |4 oth | |
700 | 1 | |a Guidal, M. |4 oth | |
700 | 1 | |a Haller, G. |4 oth | |
700 | 1 | |a Hansson Adrian, P. |4 oth | |
700 | 1 | |a Herbst, R. |4 oth | |
700 | 1 | |a Holtrop, M. |4 oth | |
700 | 1 | |a Jaros, J. |4 oth | |
700 | 1 | |a Kaneta, S. |4 oth | |
700 | 1 | |a Khandaker, M. |4 oth | |
700 | 1 | |a Kubarovsky, A. |4 oth | |
700 | 1 | |a Kubarovsky, V. |4 oth | |
700 | 1 | |a Maruyama, T. |4 oth | |
700 | 1 | |a McCormick, J. |4 oth | |
700 | 1 | |a Moffeit, K. |4 oth | |
700 | 1 | |a Moreno, O. |4 oth | |
700 | 1 | |a Neal, H. |4 oth | |
700 | 1 | |a Nelson, T. |4 oth | |
700 | 1 | |a Niccolai, S. |4 oth | |
700 | 1 | |a Odian, A. |4 oth | |
700 | 1 | |a Oriunno, M. |4 oth | |
700 | 1 | |a Paremuzyan, R. |4 oth | |
700 | 1 | |a Partridge, R. |4 oth | |
700 | 1 | |a Phillips, S.K. |4 oth | |
700 | 1 | |a Rauly, E. |4 oth | |
700 | 1 | |a Raydo, B. |4 oth | |
700 | 1 | |a Reichert, J. |4 oth | |
700 | 1 | |a Rindel, E. |4 oth | |
700 | 1 | |a Rosier, P. |4 oth | |
700 | 1 | |a Salgado, C. |4 oth | |
700 | 1 | |a Schuster, P. |4 oth | |
700 | 1 | |a Sharabian, Y. |4 oth | |
700 | 1 | |a Sokhan, D. |4 oth | |
700 | 1 | |a Stepanyan, S. |4 oth | |
700 | 1 | |a Toro, N. |4 oth | |
700 | 1 | |a Uemura, S. |4 oth | |
700 | 1 | |a Ungaro, M. |4 oth | |
700 | 1 | |a Voskanyan, H. |4 oth | |
700 | 1 | |a Walz, D. |4 oth | |
700 | 1 | |a Weinstein, L.B. |4 oth | |
700 | 1 | |a Wojtsekhowski, B. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North-Holland Publ. Co |a Ide, C.V. ELSEVIER |t The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |d 2017 |d a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics |g Amsterdam |w (DE-627)ELV000874671 |
773 | 1 | 8 | |g volume:777 |g year:2015 |g day:21 |g month:03 |g pages:91-101 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nima.2014.12.017 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.90 |j Neurologie |q VZ |
951 | |a AR | ||
952 | |d 777 |j 2015 |b 21 |c 0321 |h 91-101 |g 11 | ||
953 | |2 045F |a 530 |
author_variant |
m b mb |
---|---|
matchkey_str |
battaglierimboyarinovsbueltmannsburkertv:2015----:hhayhtnerhet |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
44.90 |
publishDate |
2015 |
allfields |
10.1016/j.nima.2014.12.017 doi GBV00000000000207A.pica (DE-627)ELV028778715 (ELSEVIER)S0168-9002(14)01458-2 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Battaglieri, M. verfasserin aut The Heavy Photon Search test detector 2015transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. Tracking Elsevier Heavy photon Elsevier Dark photon Elsevier Silicon Elsevier Electromagnetic calorimeter Elsevier Vertexing Elsevier Boyarinov, S. oth Bueltmann, S. oth Burkert, V. oth Celentano, A. oth Charles, G. oth Cooper, W. oth Cuevas, C. oth Dashyan, N. oth DeVita, R. oth Desnault, C. oth Deur, A. oth Egiyan, H. oth Elouadrhiri, L. oth Essig, R. oth Fadeyev, V. oth Field, C. oth Freyberger, A. oth Gershtein, Y. oth Gevorgyan, N. oth Girod, F.-X. oth Graf, N. oth Graham, M. oth Griffioen, K. oth Grillo, A. oth Guidal, M. oth Haller, G. oth Hansson Adrian, P. oth Herbst, R. oth Holtrop, M. oth Jaros, J. oth Kaneta, S. oth Khandaker, M. oth Kubarovsky, A. oth Kubarovsky, V. oth Maruyama, T. oth McCormick, J. oth Moffeit, K. oth Moreno, O. oth Neal, H. oth Nelson, T. oth Niccolai, S. oth Odian, A. oth Oriunno, M. oth Paremuzyan, R. oth Partridge, R. oth Phillips, S.K. oth Rauly, E. oth Raydo, B. oth Reichert, J. oth Rindel, E. oth Rosier, P. oth Salgado, C. oth Schuster, P. oth Sharabian, Y. oth Sokhan, D. oth Stepanyan, S. oth Toro, N. oth Uemura, S. oth Ungaro, M. oth Voskanyan, H. oth Walz, D. oth Weinstein, L.B. oth Wojtsekhowski, B. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:777 year:2015 day:21 month:03 pages:91-101 extent:11 https://doi.org/10.1016/j.nima.2014.12.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 777 2015 21 0321 91-101 11 045F 530 |
spelling |
10.1016/j.nima.2014.12.017 doi GBV00000000000207A.pica (DE-627)ELV028778715 (ELSEVIER)S0168-9002(14)01458-2 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Battaglieri, M. verfasserin aut The Heavy Photon Search test detector 2015transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. Tracking Elsevier Heavy photon Elsevier Dark photon Elsevier Silicon Elsevier Electromagnetic calorimeter Elsevier Vertexing Elsevier Boyarinov, S. oth Bueltmann, S. oth Burkert, V. oth Celentano, A. oth Charles, G. oth Cooper, W. oth Cuevas, C. oth Dashyan, N. oth DeVita, R. oth Desnault, C. oth Deur, A. oth Egiyan, H. oth Elouadrhiri, L. oth Essig, R. oth Fadeyev, V. oth Field, C. oth Freyberger, A. oth Gershtein, Y. oth Gevorgyan, N. oth Girod, F.-X. oth Graf, N. oth Graham, M. oth Griffioen, K. oth Grillo, A. oth Guidal, M. oth Haller, G. oth Hansson Adrian, P. oth Herbst, R. oth Holtrop, M. oth Jaros, J. oth Kaneta, S. oth Khandaker, M. oth Kubarovsky, A. oth Kubarovsky, V. oth Maruyama, T. oth McCormick, J. oth Moffeit, K. oth Moreno, O. oth Neal, H. oth Nelson, T. oth Niccolai, S. oth Odian, A. oth Oriunno, M. oth Paremuzyan, R. oth Partridge, R. oth Phillips, S.K. oth Rauly, E. oth Raydo, B. oth Reichert, J. oth Rindel, E. oth Rosier, P. oth Salgado, C. oth Schuster, P. oth Sharabian, Y. oth Sokhan, D. oth Stepanyan, S. oth Toro, N. oth Uemura, S. oth Ungaro, M. oth Voskanyan, H. oth Walz, D. oth Weinstein, L.B. oth Wojtsekhowski, B. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:777 year:2015 day:21 month:03 pages:91-101 extent:11 https://doi.org/10.1016/j.nima.2014.12.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 777 2015 21 0321 91-101 11 045F 530 |
allfields_unstemmed |
10.1016/j.nima.2014.12.017 doi GBV00000000000207A.pica (DE-627)ELV028778715 (ELSEVIER)S0168-9002(14)01458-2 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Battaglieri, M. verfasserin aut The Heavy Photon Search test detector 2015transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. Tracking Elsevier Heavy photon Elsevier Dark photon Elsevier Silicon Elsevier Electromagnetic calorimeter Elsevier Vertexing Elsevier Boyarinov, S. oth Bueltmann, S. oth Burkert, V. oth Celentano, A. oth Charles, G. oth Cooper, W. oth Cuevas, C. oth Dashyan, N. oth DeVita, R. oth Desnault, C. oth Deur, A. oth Egiyan, H. oth Elouadrhiri, L. oth Essig, R. oth Fadeyev, V. oth Field, C. oth Freyberger, A. oth Gershtein, Y. oth Gevorgyan, N. oth Girod, F.-X. oth Graf, N. oth Graham, M. oth Griffioen, K. oth Grillo, A. oth Guidal, M. oth Haller, G. oth Hansson Adrian, P. oth Herbst, R. oth Holtrop, M. oth Jaros, J. oth Kaneta, S. oth Khandaker, M. oth Kubarovsky, A. oth Kubarovsky, V. oth Maruyama, T. oth McCormick, J. oth Moffeit, K. oth Moreno, O. oth Neal, H. oth Nelson, T. oth Niccolai, S. oth Odian, A. oth Oriunno, M. oth Paremuzyan, R. oth Partridge, R. oth Phillips, S.K. oth Rauly, E. oth Raydo, B. oth Reichert, J. oth Rindel, E. oth Rosier, P. oth Salgado, C. oth Schuster, P. oth Sharabian, Y. oth Sokhan, D. oth Stepanyan, S. oth Toro, N. oth Uemura, S. oth Ungaro, M. oth Voskanyan, H. oth Walz, D. oth Weinstein, L.B. oth Wojtsekhowski, B. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:777 year:2015 day:21 month:03 pages:91-101 extent:11 https://doi.org/10.1016/j.nima.2014.12.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 777 2015 21 0321 91-101 11 045F 530 |
allfieldsGer |
10.1016/j.nima.2014.12.017 doi GBV00000000000207A.pica (DE-627)ELV028778715 (ELSEVIER)S0168-9002(14)01458-2 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Battaglieri, M. verfasserin aut The Heavy Photon Search test detector 2015transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. Tracking Elsevier Heavy photon Elsevier Dark photon Elsevier Silicon Elsevier Electromagnetic calorimeter Elsevier Vertexing Elsevier Boyarinov, S. oth Bueltmann, S. oth Burkert, V. oth Celentano, A. oth Charles, G. oth Cooper, W. oth Cuevas, C. oth Dashyan, N. oth DeVita, R. oth Desnault, C. oth Deur, A. oth Egiyan, H. oth Elouadrhiri, L. oth Essig, R. oth Fadeyev, V. oth Field, C. oth Freyberger, A. oth Gershtein, Y. oth Gevorgyan, N. oth Girod, F.-X. oth Graf, N. oth Graham, M. oth Griffioen, K. oth Grillo, A. oth Guidal, M. oth Haller, G. oth Hansson Adrian, P. oth Herbst, R. oth Holtrop, M. oth Jaros, J. oth Kaneta, S. oth Khandaker, M. oth Kubarovsky, A. oth Kubarovsky, V. oth Maruyama, T. oth McCormick, J. oth Moffeit, K. oth Moreno, O. oth Neal, H. oth Nelson, T. oth Niccolai, S. oth Odian, A. oth Oriunno, M. oth Paremuzyan, R. oth Partridge, R. oth Phillips, S.K. oth Rauly, E. oth Raydo, B. oth Reichert, J. oth Rindel, E. oth Rosier, P. oth Salgado, C. oth Schuster, P. oth Sharabian, Y. oth Sokhan, D. oth Stepanyan, S. oth Toro, N. oth Uemura, S. oth Ungaro, M. oth Voskanyan, H. oth Walz, D. oth Weinstein, L.B. oth Wojtsekhowski, B. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:777 year:2015 day:21 month:03 pages:91-101 extent:11 https://doi.org/10.1016/j.nima.2014.12.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 777 2015 21 0321 91-101 11 045F 530 |
allfieldsSound |
10.1016/j.nima.2014.12.017 doi GBV00000000000207A.pica (DE-627)ELV028778715 (ELSEVIER)S0168-9002(14)01458-2 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Battaglieri, M. verfasserin aut The Heavy Photon Search test detector 2015transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. Tracking Elsevier Heavy photon Elsevier Dark photon Elsevier Silicon Elsevier Electromagnetic calorimeter Elsevier Vertexing Elsevier Boyarinov, S. oth Bueltmann, S. oth Burkert, V. oth Celentano, A. oth Charles, G. oth Cooper, W. oth Cuevas, C. oth Dashyan, N. oth DeVita, R. oth Desnault, C. oth Deur, A. oth Egiyan, H. oth Elouadrhiri, L. oth Essig, R. oth Fadeyev, V. oth Field, C. oth Freyberger, A. oth Gershtein, Y. oth Gevorgyan, N. oth Girod, F.-X. oth Graf, N. oth Graham, M. oth Griffioen, K. oth Grillo, A. oth Guidal, M. oth Haller, G. oth Hansson Adrian, P. oth Herbst, R. oth Holtrop, M. oth Jaros, J. oth Kaneta, S. oth Khandaker, M. oth Kubarovsky, A. oth Kubarovsky, V. oth Maruyama, T. oth McCormick, J. oth Moffeit, K. oth Moreno, O. oth Neal, H. oth Nelson, T. oth Niccolai, S. oth Odian, A. oth Oriunno, M. oth Paremuzyan, R. oth Partridge, R. oth Phillips, S.K. oth Rauly, E. oth Raydo, B. oth Reichert, J. oth Rindel, E. oth Rosier, P. oth Salgado, C. oth Schuster, P. oth Sharabian, Y. oth Sokhan, D. oth Stepanyan, S. oth Toro, N. oth Uemura, S. oth Ungaro, M. oth Voskanyan, H. oth Walz, D. oth Weinstein, L.B. oth Wojtsekhowski, B. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:777 year:2015 day:21 month:03 pages:91-101 extent:11 https://doi.org/10.1016/j.nima.2014.12.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 777 2015 21 0321 91-101 11 045F 530 |
language |
English |
source |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:777 year:2015 day:21 month:03 pages:91-101 extent:11 |
sourceStr |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:777 year:2015 day:21 month:03 pages:91-101 extent:11 |
format_phy_str_mv |
Article |
bklname |
Neurologie |
institution |
findex.gbv.de |
topic_facet |
Tracking Heavy photon Dark photon Silicon Electromagnetic calorimeter Vertexing |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
authorswithroles_txt_mv |
Battaglieri, M. @@aut@@ Boyarinov, S. @@oth@@ Bueltmann, S. @@oth@@ Burkert, V. @@oth@@ Celentano, A. @@oth@@ Charles, G. @@oth@@ Cooper, W. @@oth@@ Cuevas, C. @@oth@@ Dashyan, N. @@oth@@ DeVita, R. @@oth@@ Desnault, C. @@oth@@ Deur, A. @@oth@@ Egiyan, H. @@oth@@ Elouadrhiri, L. @@oth@@ Essig, R. @@oth@@ Fadeyev, V. @@oth@@ Field, C. @@oth@@ Freyberger, A. @@oth@@ Gershtein, Y. @@oth@@ Gevorgyan, N. @@oth@@ Girod, F.-X. @@oth@@ Graf, N. @@oth@@ Graham, M. @@oth@@ Griffioen, K. @@oth@@ Grillo, A. @@oth@@ Guidal, M. @@oth@@ Haller, G. @@oth@@ Hansson Adrian, P. @@oth@@ Herbst, R. @@oth@@ Holtrop, M. @@oth@@ Jaros, J. @@oth@@ Kaneta, S. @@oth@@ Khandaker, M. @@oth@@ Kubarovsky, A. @@oth@@ Kubarovsky, V. @@oth@@ Maruyama, T. @@oth@@ McCormick, J. @@oth@@ Moffeit, K. @@oth@@ Moreno, O. @@oth@@ Neal, H. @@oth@@ Nelson, T. @@oth@@ Niccolai, S. @@oth@@ Odian, A. @@oth@@ Oriunno, M. @@oth@@ Paremuzyan, R. @@oth@@ Partridge, R. @@oth@@ Phillips, S.K. @@oth@@ Rauly, E. @@oth@@ Raydo, B. @@oth@@ Reichert, J. @@oth@@ Rindel, E. @@oth@@ Rosier, P. @@oth@@ Salgado, C. @@oth@@ Schuster, P. @@oth@@ Sharabian, Y. @@oth@@ Sokhan, D. @@oth@@ Stepanyan, S. @@oth@@ Toro, N. @@oth@@ Uemura, S. @@oth@@ Ungaro, M. @@oth@@ Voskanyan, H. @@oth@@ Walz, D. @@oth@@ Weinstein, L.B. @@oth@@ Wojtsekhowski, B. @@oth@@ |
publishDateDaySort_date |
2015-01-21T00:00:00Z |
hierarchy_top_id |
ELV000874671 |
dewey-sort |
3530 |
id |
ELV028778715 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV028778715</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625162933.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2014.12.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000207A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV028778715</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(14)01458-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Battaglieri, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Heavy Photon Search test detector</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tracking</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heavy photon</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dark photon</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Silicon</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electromagnetic calorimeter</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vertexing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boyarinov, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bueltmann, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burkert, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Celentano, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Charles, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cooper, W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cuevas, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dashyan, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DeVita, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Desnault, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deur, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Egiyan, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elouadrhiri, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Essig, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fadeyev, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Field, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Freyberger, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gershtein, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gevorgyan, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Girod, F.-X.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graf, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graham, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griffioen, K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grillo, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guidal, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haller, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hansson Adrian, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herbst, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holtrop, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaros, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaneta, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khandaker, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kubarovsky, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kubarovsky, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maruyama, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McCormick, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moffeit, K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moreno, O.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neal, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelson, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niccolai, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Odian, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oriunno, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paremuzyan, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Partridge, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phillips, S.K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rauly, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raydo, B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reichert, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rindel, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosier, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salgado, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schuster, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharabian, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sokhan, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stepanyan, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toro, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uemura, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ungaro, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Voskanyan, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Walz, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weinstein, L.B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wojtsekhowski, B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:777</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:21</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:91-101</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2014.12.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">777</subfield><subfield code="j">2015</subfield><subfield code="b">21</subfield><subfield code="c">0321</subfield><subfield code="h">91-101</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Battaglieri, M. |
spellingShingle |
Battaglieri, M. ddc 530 ddc 610 bkl 44.90 Elsevier Tracking Elsevier Heavy photon Elsevier Dark photon Elsevier Silicon Elsevier Electromagnetic calorimeter Elsevier Vertexing The Heavy Photon Search test detector |
authorStr |
Battaglieri, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000874671 |
format |
electronic Article |
dewey-ones |
530 - Physics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 610 VZ 44.90 bkl The Heavy Photon Search test detector Tracking Elsevier Heavy photon Elsevier Dark photon Elsevier Silicon Elsevier Electromagnetic calorimeter Elsevier Vertexing Elsevier |
topic |
ddc 530 ddc 610 bkl 44.90 Elsevier Tracking Elsevier Heavy photon Elsevier Dark photon Elsevier Silicon Elsevier Electromagnetic calorimeter Elsevier Vertexing |
topic_unstemmed |
ddc 530 ddc 610 bkl 44.90 Elsevier Tracking Elsevier Heavy photon Elsevier Dark photon Elsevier Silicon Elsevier Electromagnetic calorimeter Elsevier Vertexing |
topic_browse |
ddc 530 ddc 610 bkl 44.90 Elsevier Tracking Elsevier Heavy photon Elsevier Dark photon Elsevier Silicon Elsevier Electromagnetic calorimeter Elsevier Vertexing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s b sb s b sb v b vb a c ac g c gc w c wc c c cc n d nd r d rd c d cd a d ad h e he l e le r e re v f vf c f cf a f af y g yg n g ng f x g fxg n g ng m g mg k g kg a g ag m g mg g h gh a p h ap aph r h rh m h mh j j jj s k sk m k mk a k ak v k vk t m tm j m jm k m km o m om h n hn t n tn s n sn a o ao m o mo r p rp r p rp s p sp e r er b r br j r jr e r er p r pr c s cs p s ps y s ys d s ds s s ss n t nt s u su m u mu h v hv d w dw l w lw b w bw |
hierarchy_parent_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
hierarchy_parent_id |
ELV000874671 |
dewey-tens |
530 - Physics 610 - Medicine & health |
hierarchy_top_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000874671 |
title |
The Heavy Photon Search test detector |
ctrlnum |
(DE-627)ELV028778715 (ELSEVIER)S0168-9002(14)01458-2 |
title_full |
The Heavy Photon Search test detector |
author_sort |
Battaglieri, M. |
journal |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
journalStr |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
91 |
author_browse |
Battaglieri, M. |
container_volume |
777 |
physical |
11 |
class |
530 530 DE-600 610 VZ 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Battaglieri, M. |
doi_str_mv |
10.1016/j.nima.2014.12.017 |
dewey-full |
530 610 |
title_sort |
heavy photon search test detector |
title_auth |
The Heavy Photon Search test detector |
abstract |
The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. |
abstractGer |
The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. |
abstract_unstemmed |
The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
The Heavy Photon Search test detector |
url |
https://doi.org/10.1016/j.nima.2014.12.017 |
remote_bool |
true |
author2 |
Boyarinov, S. Bueltmann, S. Burkert, V. Celentano, A. Charles, G. Cooper, W. Cuevas, C. Dashyan, N. DeVita, R. Desnault, C. Deur, A. Egiyan, H. Elouadrhiri, L. Essig, R. Fadeyev, V. Field, C. Freyberger, A. Gershtein, Y. Gevorgyan, N. Girod, F.-X. Graf, N. Graham, M. Griffioen, K. Grillo, A. Guidal, M. Haller, G. Hansson Adrian, P. Herbst, R. Holtrop, M. Jaros, J. Kaneta, S. Khandaker, M. Kubarovsky, A. Kubarovsky, V. Maruyama, T. McCormick, J. Moffeit, K. Moreno, O. Neal, H. Nelson, T. Niccolai, S. Odian, A. Oriunno, M. Paremuzyan, R. Partridge, R. Phillips, S.K. Rauly, E. Raydo, B. Reichert, J. Rindel, E. Rosier, P. Salgado, C. Schuster, P. Sharabian, Y. Sokhan, D. Stepanyan, S. Toro, N. Uemura, S. Ungaro, M. Voskanyan, H. Walz, D. Weinstein, L.B. Wojtsekhowski, B. |
author2Str |
Boyarinov, S. Bueltmann, S. Burkert, V. Celentano, A. Charles, G. Cooper, W. Cuevas, C. Dashyan, N. DeVita, R. Desnault, C. Deur, A. Egiyan, H. Elouadrhiri, L. Essig, R. Fadeyev, V. Field, C. Freyberger, A. Gershtein, Y. Gevorgyan, N. Girod, F.-X. Graf, N. Graham, M. Griffioen, K. Grillo, A. Guidal, M. Haller, G. Hansson Adrian, P. Herbst, R. Holtrop, M. Jaros, J. Kaneta, S. Khandaker, M. Kubarovsky, A. Kubarovsky, V. Maruyama, T. McCormick, J. Moffeit, K. Moreno, O. Neal, H. Nelson, T. Niccolai, S. Odian, A. Oriunno, M. Paremuzyan, R. Partridge, R. Phillips, S.K. Rauly, E. Raydo, B. Reichert, J. Rindel, E. Rosier, P. Salgado, C. Schuster, P. Sharabian, Y. Sokhan, D. Stepanyan, S. Toro, N. Uemura, S. Ungaro, M. Voskanyan, H. Walz, D. Weinstein, L.B. Wojtsekhowski, B. |
ppnlink |
ELV000874671 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.nima.2014.12.017 |
up_date |
2024-07-06T19:41:44.570Z |
_version_ |
1803859949855440896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV028778715</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625162933.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2014.12.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000207A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV028778715</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(14)01458-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Battaglieri, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Heavy Photon Search test detector</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e + e − invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e + e − pairs requires the first layer of silicon sensors be placed only 10cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tracking</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heavy photon</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dark photon</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Silicon</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electromagnetic calorimeter</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vertexing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boyarinov, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bueltmann, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burkert, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Celentano, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Charles, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cooper, W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cuevas, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dashyan, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DeVita, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Desnault, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deur, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Egiyan, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elouadrhiri, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Essig, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fadeyev, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Field, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Freyberger, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gershtein, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gevorgyan, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Girod, F.-X.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graf, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graham, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griffioen, K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grillo, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guidal, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haller, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hansson Adrian, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herbst, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holtrop, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaros, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaneta, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khandaker, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kubarovsky, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kubarovsky, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maruyama, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McCormick, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moffeit, K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moreno, O.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neal, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelson, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niccolai, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Odian, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oriunno, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paremuzyan, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Partridge, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phillips, S.K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rauly, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raydo, B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reichert, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rindel, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosier, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salgado, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schuster, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharabian, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sokhan, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stepanyan, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toro, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uemura, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ungaro, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Voskanyan, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Walz, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weinstein, L.B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wojtsekhowski, B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:777</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:21</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:91-101</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2014.12.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">777</subfield><subfield code="j">2015</subfield><subfield code="b">21</subfield><subfield code="c">0321</subfield><subfield code="h">91-101</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.4016743 |