The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics
Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fract...
Ausführliche Beschreibung
Autor*in: |
Pittari, John [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
12 |
---|
Übergeordnetes Werk: |
Enthalten in: Improved differential evolution for RSSD-based localization in Gaussian mixture noise - Zhang, Yuanyuan ELSEVIER, 2023, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:35 ; year:2015 ; number:16 ; pages:4411-4422 ; extent:12 |
Links: |
---|
DOI / URN: |
10.1016/j.jeurceramsoc.2015.08.027 |
---|
Katalog-ID: |
ELV029124891 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV029124891 | ||
003 | DE-627 | ||
005 | 20230625170214.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jeurceramsoc.2015.08.027 |2 doi | |
028 | 5 | 2 | |a GBVA2015016000011.pica |
035 | |a (DE-627)ELV029124891 | ||
035 | |a (ELSEVIER)S0955-2219(15)30109-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 660 | |
082 | 0 | 4 | |a 660 |q DE-600 |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Pittari, John |e verfasserin |4 aut | |
245 | 1 | 4 | |a The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics |
264 | 1 | |c 2015transfer abstract | |
300 | |a 12 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. | ||
520 | |a Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. | ||
650 | 7 | |a Chevron notch |2 Elsevier | |
650 | 7 | |a Reaction bonding |2 Elsevier | |
650 | 7 | |a Silicon carbide |2 Elsevier | |
650 | 7 | |a Boron carbide |2 Elsevier | |
650 | 7 | |a Fracture toughness |2 Elsevier | |
700 | 1 | |a Subhash, Ghatu |4 oth | |
700 | 1 | |a Zheng, James |4 oth | |
700 | 1 | |a Halls, Virginia |4 oth | |
700 | 1 | |a Jannotti, Phillip |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Zhang, Yuanyuan ELSEVIER |t Improved differential evolution for RSSD-based localization in Gaussian mixture noise |d 2023 |g Amsterdam [u.a.] |w (DE-627)ELV009961755 |
773 | 1 | 8 | |g volume:35 |g year:2015 |g number:16 |g pages:4411-4422 |g extent:12 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jeurceramsoc.2015.08.027 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 54.00 |j Informatik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 35 |j 2015 |e 16 |h 4411-4422 |g 12 | ||
953 | |2 045F |a 660 |
author_variant |
j p jp |
---|---|
matchkey_str |
pittarijohnsubhashghatuzhengjameshallsvi:2015----:hrtdpnetrcueognsoslcnabdadoo |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
54.00 |
publishDate |
2015 |
allfields |
10.1016/j.jeurceramsoc.2015.08.027 doi GBVA2015016000011.pica (DE-627)ELV029124891 (ELSEVIER)S0955-2219(15)30109-6 DE-627 ger DE-627 rakwb eng 660 660 DE-600 004 VZ 54.00 bkl Pittari, John verfasserin aut The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics 2015transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. Chevron notch Elsevier Reaction bonding Elsevier Silicon carbide Elsevier Boron carbide Elsevier Fracture toughness Elsevier Subhash, Ghatu oth Zheng, James oth Halls, Virginia oth Jannotti, Phillip oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:35 year:2015 number:16 pages:4411-4422 extent:12 https://doi.org/10.1016/j.jeurceramsoc.2015.08.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 35 2015 16 4411-4422 12 045F 660 |
spelling |
10.1016/j.jeurceramsoc.2015.08.027 doi GBVA2015016000011.pica (DE-627)ELV029124891 (ELSEVIER)S0955-2219(15)30109-6 DE-627 ger DE-627 rakwb eng 660 660 DE-600 004 VZ 54.00 bkl Pittari, John verfasserin aut The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics 2015transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. Chevron notch Elsevier Reaction bonding Elsevier Silicon carbide Elsevier Boron carbide Elsevier Fracture toughness Elsevier Subhash, Ghatu oth Zheng, James oth Halls, Virginia oth Jannotti, Phillip oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:35 year:2015 number:16 pages:4411-4422 extent:12 https://doi.org/10.1016/j.jeurceramsoc.2015.08.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 35 2015 16 4411-4422 12 045F 660 |
allfields_unstemmed |
10.1016/j.jeurceramsoc.2015.08.027 doi GBVA2015016000011.pica (DE-627)ELV029124891 (ELSEVIER)S0955-2219(15)30109-6 DE-627 ger DE-627 rakwb eng 660 660 DE-600 004 VZ 54.00 bkl Pittari, John verfasserin aut The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics 2015transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. Chevron notch Elsevier Reaction bonding Elsevier Silicon carbide Elsevier Boron carbide Elsevier Fracture toughness Elsevier Subhash, Ghatu oth Zheng, James oth Halls, Virginia oth Jannotti, Phillip oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:35 year:2015 number:16 pages:4411-4422 extent:12 https://doi.org/10.1016/j.jeurceramsoc.2015.08.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 35 2015 16 4411-4422 12 045F 660 |
allfieldsGer |
10.1016/j.jeurceramsoc.2015.08.027 doi GBVA2015016000011.pica (DE-627)ELV029124891 (ELSEVIER)S0955-2219(15)30109-6 DE-627 ger DE-627 rakwb eng 660 660 DE-600 004 VZ 54.00 bkl Pittari, John verfasserin aut The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics 2015transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. Chevron notch Elsevier Reaction bonding Elsevier Silicon carbide Elsevier Boron carbide Elsevier Fracture toughness Elsevier Subhash, Ghatu oth Zheng, James oth Halls, Virginia oth Jannotti, Phillip oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:35 year:2015 number:16 pages:4411-4422 extent:12 https://doi.org/10.1016/j.jeurceramsoc.2015.08.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 35 2015 16 4411-4422 12 045F 660 |
allfieldsSound |
10.1016/j.jeurceramsoc.2015.08.027 doi GBVA2015016000011.pica (DE-627)ELV029124891 (ELSEVIER)S0955-2219(15)30109-6 DE-627 ger DE-627 rakwb eng 660 660 DE-600 004 VZ 54.00 bkl Pittari, John verfasserin aut The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics 2015transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. Chevron notch Elsevier Reaction bonding Elsevier Silicon carbide Elsevier Boron carbide Elsevier Fracture toughness Elsevier Subhash, Ghatu oth Zheng, James oth Halls, Virginia oth Jannotti, Phillip oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:35 year:2015 number:16 pages:4411-4422 extent:12 https://doi.org/10.1016/j.jeurceramsoc.2015.08.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 35 2015 16 4411-4422 12 045F 660 |
language |
English |
source |
Enthalten in Improved differential evolution for RSSD-based localization in Gaussian mixture noise Amsterdam [u.a.] volume:35 year:2015 number:16 pages:4411-4422 extent:12 |
sourceStr |
Enthalten in Improved differential evolution for RSSD-based localization in Gaussian mixture noise Amsterdam [u.a.] volume:35 year:2015 number:16 pages:4411-4422 extent:12 |
format_phy_str_mv |
Article |
bklname |
Informatik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Chevron notch Reaction bonding Silicon carbide Boron carbide Fracture toughness |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
authorswithroles_txt_mv |
Pittari, John @@aut@@ Subhash, Ghatu @@oth@@ Zheng, James @@oth@@ Halls, Virginia @@oth@@ Jannotti, Phillip @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV009961755 |
dewey-sort |
3660 |
id |
ELV029124891 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV029124891</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625170214.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jeurceramsoc.2015.08.027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015016000011.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV029124891</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0955-2219(15)30109-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pittari, John</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chevron notch</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reaction bonding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Silicon carbide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boron carbide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fracture toughness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Subhash, Ghatu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, James</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halls, Virginia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jannotti, Phillip</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhang, Yuanyuan ELSEVIER</subfield><subfield code="t">Improved differential evolution for RSSD-based localization in Gaussian mixture noise</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009961755</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:16</subfield><subfield code="g">pages:4411-4422</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jeurceramsoc.2015.08.027</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2015</subfield><subfield code="e">16</subfield><subfield code="h">4411-4422</subfield><subfield code="g">12</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
author |
Pittari, John |
spellingShingle |
Pittari, John ddc 660 ddc 004 bkl 54.00 Elsevier Chevron notch Elsevier Reaction bonding Elsevier Silicon carbide Elsevier Boron carbide Elsevier Fracture toughness The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics |
authorStr |
Pittari, John |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV009961755 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 660 DE-600 004 VZ 54.00 bkl The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics Chevron notch Elsevier Reaction bonding Elsevier Silicon carbide Elsevier Boron carbide Elsevier Fracture toughness Elsevier |
topic |
ddc 660 ddc 004 bkl 54.00 Elsevier Chevron notch Elsevier Reaction bonding Elsevier Silicon carbide Elsevier Boron carbide Elsevier Fracture toughness |
topic_unstemmed |
ddc 660 ddc 004 bkl 54.00 Elsevier Chevron notch Elsevier Reaction bonding Elsevier Silicon carbide Elsevier Boron carbide Elsevier Fracture toughness |
topic_browse |
ddc 660 ddc 004 bkl 54.00 Elsevier Chevron notch Elsevier Reaction bonding Elsevier Silicon carbide Elsevier Boron carbide Elsevier Fracture toughness |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
g s gs j z jz v h vh p j pj |
hierarchy_parent_title |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
hierarchy_parent_id |
ELV009961755 |
dewey-tens |
660 - Chemical engineering 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV009961755 |
title |
The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics |
ctrlnum |
(DE-627)ELV029124891 (ELSEVIER)S0955-2219(15)30109-6 |
title_full |
The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics |
author_sort |
Pittari, John |
journal |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
journalStr |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
4411 |
author_browse |
Pittari, John |
container_volume |
35 |
physical |
12 |
class |
660 660 DE-600 004 VZ 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Pittari, John |
doi_str_mv |
10.1016/j.jeurceramsoc.2015.08.027 |
dewey-full |
660 004 |
title_sort |
rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics |
title_auth |
The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics |
abstract |
Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. |
abstractGer |
Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. |
abstract_unstemmed |
Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
16 |
title_short |
The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics |
url |
https://doi.org/10.1016/j.jeurceramsoc.2015.08.027 |
remote_bool |
true |
author2 |
Subhash, Ghatu Zheng, James Halls, Virginia Jannotti, Phillip |
author2Str |
Subhash, Ghatu Zheng, James Halls, Virginia Jannotti, Phillip |
ppnlink |
ELV009961755 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.jeurceramsoc.2015.08.027 |
up_date |
2024-07-06T20:37:01.764Z |
_version_ |
1803863428184408064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV029124891</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625170214.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jeurceramsoc.2015.08.027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015016000011.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV029124891</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0955-2219(15)30109-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pittari, John</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thirteen silicon carbide and boron carbide ceramics and ceramic composites manufactured through pressureless sintering and reaction bonding techniques have been tested in a four-point bend, chevron notch testing procedure to determine their static and dynamic fracture toughness values. Dynamic fracture toughness testing was performed in a modified Hopkinson pressure bar to investigate the effect of high-rate loading on fracture toughness values and fracture characteristics. Fracture surfaces were investigated through optical profilometry and scanning electron microscopy to examine the surface roughness and fracture morphology. Reaction-bonded ceramic composites were found to have elevated fracture toughness values compared to pressureless-sintered ceramics. This enhancement is attributed to a change in fracture mode of the reaction-bonded materials and processing-induced residual compressive stresses within the silicon phase.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chevron notch</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reaction bonding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Silicon carbide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boron carbide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fracture toughness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Subhash, Ghatu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, James</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halls, Virginia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jannotti, Phillip</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhang, Yuanyuan ELSEVIER</subfield><subfield code="t">Improved differential evolution for RSSD-based localization in Gaussian mixture noise</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009961755</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:16</subfield><subfield code="g">pages:4411-4422</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jeurceramsoc.2015.08.027</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2015</subfield><subfield code="e">16</subfield><subfield code="h">4411-4422</subfield><subfield code="g">12</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
score |
7.401079 |