The encoding of category-specific versus nonspecific information in human inferior temporal cortex
Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at...
Ausführliche Beschreibung
Autor*in: |
Guo, Bingbing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements - Nicosia, Alessia ELSEVIER, 2017, a journal of brain function, Orlando, Fla |
---|---|
Übergeordnetes Werk: |
volume:116 ; year:2015 ; day:1 ; month:08 ; pages:240-247 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.neuroimage.2015.04.006 |
---|
Katalog-ID: |
ELV02919654X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV02919654X | ||
003 | DE-627 | ||
005 | 20230625171019.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neuroimage.2015.04.006 |2 doi | |
028 | 5 | 2 | |a GBVA2015018000002.pica |
035 | |a (DE-627)ELV02919654X | ||
035 | |a (ELSEVIER)S1053-8119(15)00284-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 610 | |
082 | 0 | 4 | |a 610 |q DE-600 |
100 | 1 | |a Guo, Bingbing |e verfasserin |4 aut | |
245 | 1 | 4 | |a The encoding of category-specific versus nonspecific information in human inferior temporal cortex |
264 | 1 | |c 2015transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. | ||
520 | |a Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. | ||
700 | 1 | |a Meng, Ming |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Academic Press |a Nicosia, Alessia ELSEVIER |t Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |d 2017 |d a journal of brain function |g Orlando, Fla |w (DE-627)ELV001942808 |
773 | 1 | 8 | |g volume:116 |g year:2015 |g day:1 |g month:08 |g pages:240-247 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.neuroimage.2015.04.006 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
951 | |a AR | ||
952 | |d 116 |j 2015 |b 1 |c 0801 |h 240-247 |g 8 | ||
953 | |2 045F |a 610 |
author_variant |
b g bg |
---|---|
matchkey_str |
guobingbingmengming:2015----:hecdnoctgrseiivrunnpcfcnomtoihm |
hierarchy_sort_str |
2015transfer abstract |
publishDate |
2015 |
allfields |
10.1016/j.neuroimage.2015.04.006 doi GBVA2015018000002.pica (DE-627)ELV02919654X (ELSEVIER)S1053-8119(15)00284-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 Guo, Bingbing verfasserin aut The encoding of category-specific versus nonspecific information in human inferior temporal cortex 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. Meng, Ming oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:116 year:2015 day:1 month:08 pages:240-247 extent:8 https://doi.org/10.1016/j.neuroimage.2015.04.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 116 2015 1 0801 240-247 8 045F 610 |
spelling |
10.1016/j.neuroimage.2015.04.006 doi GBVA2015018000002.pica (DE-627)ELV02919654X (ELSEVIER)S1053-8119(15)00284-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 Guo, Bingbing verfasserin aut The encoding of category-specific versus nonspecific information in human inferior temporal cortex 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. Meng, Ming oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:116 year:2015 day:1 month:08 pages:240-247 extent:8 https://doi.org/10.1016/j.neuroimage.2015.04.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 116 2015 1 0801 240-247 8 045F 610 |
allfields_unstemmed |
10.1016/j.neuroimage.2015.04.006 doi GBVA2015018000002.pica (DE-627)ELV02919654X (ELSEVIER)S1053-8119(15)00284-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 Guo, Bingbing verfasserin aut The encoding of category-specific versus nonspecific information in human inferior temporal cortex 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. Meng, Ming oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:116 year:2015 day:1 month:08 pages:240-247 extent:8 https://doi.org/10.1016/j.neuroimage.2015.04.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 116 2015 1 0801 240-247 8 045F 610 |
allfieldsGer |
10.1016/j.neuroimage.2015.04.006 doi GBVA2015018000002.pica (DE-627)ELV02919654X (ELSEVIER)S1053-8119(15)00284-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 Guo, Bingbing verfasserin aut The encoding of category-specific versus nonspecific information in human inferior temporal cortex 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. Meng, Ming oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:116 year:2015 day:1 month:08 pages:240-247 extent:8 https://doi.org/10.1016/j.neuroimage.2015.04.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 116 2015 1 0801 240-247 8 045F 610 |
allfieldsSound |
10.1016/j.neuroimage.2015.04.006 doi GBVA2015018000002.pica (DE-627)ELV02919654X (ELSEVIER)S1053-8119(15)00284-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 Guo, Bingbing verfasserin aut The encoding of category-specific versus nonspecific information in human inferior temporal cortex 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. Meng, Ming oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:116 year:2015 day:1 month:08 pages:240-247 extent:8 https://doi.org/10.1016/j.neuroimage.2015.04.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 116 2015 1 0801 240-247 8 045F 610 |
language |
English |
source |
Enthalten in Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements Orlando, Fla volume:116 year:2015 day:1 month:08 pages:240-247 extent:8 |
sourceStr |
Enthalten in Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements Orlando, Fla volume:116 year:2015 day:1 month:08 pages:240-247 extent:8 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
authorswithroles_txt_mv |
Guo, Bingbing @@aut@@ Meng, Ming @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV001942808 |
dewey-sort |
3610 |
id |
ELV02919654X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV02919654X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625171019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2015.04.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015018000002.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV02919654X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1053-8119(15)00284-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Bingbing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The encoding of category-specific versus nonspecific information in human inferior temporal cortex</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Ming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Nicosia, Alessia ELSEVIER</subfield><subfield code="t">Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements</subfield><subfield code="d">2017</subfield><subfield code="d">a journal of brain function</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV001942808</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:1</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:240-247</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2015.04.006</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield><subfield code="j">2015</subfield><subfield code="b">1</subfield><subfield code="c">0801</subfield><subfield code="h">240-247</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
author |
Guo, Bingbing |
spellingShingle |
Guo, Bingbing ddc 610 The encoding of category-specific versus nonspecific information in human inferior temporal cortex |
authorStr |
Guo, Bingbing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001942808 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 610 DE-600 The encoding of category-specific versus nonspecific information in human inferior temporal cortex |
topic |
ddc 610 |
topic_unstemmed |
ddc 610 |
topic_browse |
ddc 610 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m m mm |
hierarchy_parent_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
hierarchy_parent_id |
ELV001942808 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001942808 |
title |
The encoding of category-specific versus nonspecific information in human inferior temporal cortex |
ctrlnum |
(DE-627)ELV02919654X (ELSEVIER)S1053-8119(15)00284-0 |
title_full |
The encoding of category-specific versus nonspecific information in human inferior temporal cortex |
author_sort |
Guo, Bingbing |
journal |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
journalStr |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
240 |
author_browse |
Guo, Bingbing |
container_volume |
116 |
physical |
8 |
class |
610 610 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Guo, Bingbing |
doi_str_mv |
10.1016/j.neuroimage.2015.04.006 |
dewey-full |
610 |
title_sort |
encoding of category-specific versus nonspecific information in human inferior temporal cortex |
title_auth |
The encoding of category-specific versus nonspecific information in human inferior temporal cortex |
abstract |
Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. |
abstractGer |
Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. |
abstract_unstemmed |
Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
The encoding of category-specific versus nonspecific information in human inferior temporal cortex |
url |
https://doi.org/10.1016/j.neuroimage.2015.04.006 |
remote_bool |
true |
author2 |
Meng, Ming |
author2Str |
Meng, Ming |
ppnlink |
ELV001942808 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.neuroimage.2015.04.006 |
up_date |
2024-07-06T20:48:47.656Z |
_version_ |
1803864168366866432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV02919654X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625171019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2015.04.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015018000002.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV02919654X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1053-8119(15)00284-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Bingbing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The encoding of category-specific versus nonspecific information in human inferior temporal cortex</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Ming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Nicosia, Alessia ELSEVIER</subfield><subfield code="t">Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements</subfield><subfield code="d">2017</subfield><subfield code="d">a journal of brain function</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV001942808</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:1</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:240-247</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2015.04.006</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield><subfield code="j">2015</subfield><subfield code="b">1</subfield><subfield code="c">0801</subfield><subfield code="h">240-247</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
score |
7.4018974 |