Modeling and prediction of viscosity of water-based nanofluids by radial basis function neural networks

Due to the fact that the viscosity of nanofluids can be affected by many factors, it is difficult to establish an accurate prediction model using traditional model-driven methods. To address this problem, a new viscosity prediction approach based on radial basis function (RBF) neural networks is pro...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Zhao, Ningbo [verfasserIn]

Wen, Xueyou

Yang, Jialong

Li, Shuying

Wang, Zhitao

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2015transfer abstract

Umfang:

11

Übergeordnetes Werk:

Enthalten in: Role of sulfur in combating arsenic stress through upregulation of important proteins, and - Amna, Syeda ELSEVIER, 2020, an international journal on the science and technology of wet and dry particulate systems, Amsterdam [u.a.]

Übergeordnetes Werk:

volume:281 ; year:2015 ; pages:173-183 ; extent:11

Links:

Volltext

DOI / URN:

10.1016/j.powtec.2015.04.058

Katalog-ID:

ELV029395585

Nicht das Richtige dabei?

Schreiben Sie uns!