Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions
The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richards...
Ausführliche Beschreibung
Autor*in: |
Bessenrodt, Christine [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
28 |
---|
Übergeordnetes Werk: |
Enthalten in: IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR - Bandaru, Moulika ELSEVIER, 2022, JCTA, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:137 ; year:2016 ; pages:179-206 ; extent:28 |
Links: |
---|
DOI / URN: |
10.1016/j.jcta.2015.08.005 |
---|
Katalog-ID: |
ELV029448654 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV029448654 | ||
003 | DE-627 | ||
005 | 20230625173606.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcta.2015.08.005 |2 doi | |
028 | 5 | 2 | |a GBVA2016002000005.pica |
035 | |a (DE-627)ELV029448654 | ||
035 | |a (ELSEVIER)S0097-3165(15)00106-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.85 |2 bkl | ||
100 | 1 | |a Bessenrodt, Christine |e verfasserin |4 aut | |
245 | 1 | 0 | |a Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions |
264 | 1 | |c 2016transfer abstract | |
300 | |a 28 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. | ||
520 | |a The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. | ||
650 | 7 | |a Composition |2 Elsevier | |
650 | 7 | |a Littlewood–Richardson rule |2 Elsevier | |
650 | 7 | |a Quasisymmetric function |2 Elsevier | |
650 | 7 | |a Skew Schur function |2 Elsevier | |
650 | 7 | |a Schur function |2 Elsevier | |
650 | 7 | |a Symmetric function |2 Elsevier | |
650 | 7 | |a Tableaux |2 Elsevier | |
700 | 1 | |a Tewari, Vasu |4 oth | |
700 | 1 | |a van Willigenburg, Stephanie |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Bandaru, Moulika ELSEVIER |t IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |d 2022 |d JCTA |g Amsterdam [u.a.] |w (DE-627)ELV00767452X |
773 | 1 | 8 | |g volume:137 |g year:2016 |g pages:179-206 |g extent:28 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jcta.2015.08.005 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 44.85 |j Kardiologie |j Angiologie |q VZ |
951 | |a AR | ||
952 | |d 137 |j 2016 |h 179-206 |g 28 | ||
953 | |2 045F |a 510 |
author_variant |
c b cb |
---|---|
matchkey_str |
bessenrodtchristinetewarivasuvanwilligen:2016----:iteodihrsnuefrymtiseqaiym |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
44.85 |
publishDate |
2016 |
allfields |
10.1016/j.jcta.2015.08.005 doi GBVA2016002000005.pica (DE-627)ELV029448654 (ELSEVIER)S0097-3165(15)00106-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.85 bkl Bessenrodt, Christine verfasserin aut Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions 2016transfer abstract 28 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. Composition Elsevier Littlewood–Richardson rule Elsevier Quasisymmetric function Elsevier Skew Schur function Elsevier Schur function Elsevier Symmetric function Elsevier Tableaux Elsevier Tewari, Vasu oth van Willigenburg, Stephanie oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:137 year:2016 pages:179-206 extent:28 https://doi.org/10.1016/j.jcta.2015.08.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 137 2016 179-206 28 045F 510 |
spelling |
10.1016/j.jcta.2015.08.005 doi GBVA2016002000005.pica (DE-627)ELV029448654 (ELSEVIER)S0097-3165(15)00106-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.85 bkl Bessenrodt, Christine verfasserin aut Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions 2016transfer abstract 28 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. Composition Elsevier Littlewood–Richardson rule Elsevier Quasisymmetric function Elsevier Skew Schur function Elsevier Schur function Elsevier Symmetric function Elsevier Tableaux Elsevier Tewari, Vasu oth van Willigenburg, Stephanie oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:137 year:2016 pages:179-206 extent:28 https://doi.org/10.1016/j.jcta.2015.08.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 137 2016 179-206 28 045F 510 |
allfields_unstemmed |
10.1016/j.jcta.2015.08.005 doi GBVA2016002000005.pica (DE-627)ELV029448654 (ELSEVIER)S0097-3165(15)00106-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.85 bkl Bessenrodt, Christine verfasserin aut Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions 2016transfer abstract 28 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. Composition Elsevier Littlewood–Richardson rule Elsevier Quasisymmetric function Elsevier Skew Schur function Elsevier Schur function Elsevier Symmetric function Elsevier Tableaux Elsevier Tewari, Vasu oth van Willigenburg, Stephanie oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:137 year:2016 pages:179-206 extent:28 https://doi.org/10.1016/j.jcta.2015.08.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 137 2016 179-206 28 045F 510 |
allfieldsGer |
10.1016/j.jcta.2015.08.005 doi GBVA2016002000005.pica (DE-627)ELV029448654 (ELSEVIER)S0097-3165(15)00106-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.85 bkl Bessenrodt, Christine verfasserin aut Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions 2016transfer abstract 28 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. Composition Elsevier Littlewood–Richardson rule Elsevier Quasisymmetric function Elsevier Skew Schur function Elsevier Schur function Elsevier Symmetric function Elsevier Tableaux Elsevier Tewari, Vasu oth van Willigenburg, Stephanie oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:137 year:2016 pages:179-206 extent:28 https://doi.org/10.1016/j.jcta.2015.08.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 137 2016 179-206 28 045F 510 |
allfieldsSound |
10.1016/j.jcta.2015.08.005 doi GBVA2016002000005.pica (DE-627)ELV029448654 (ELSEVIER)S0097-3165(15)00106-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.85 bkl Bessenrodt, Christine verfasserin aut Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions 2016transfer abstract 28 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. Composition Elsevier Littlewood–Richardson rule Elsevier Quasisymmetric function Elsevier Skew Schur function Elsevier Schur function Elsevier Symmetric function Elsevier Tableaux Elsevier Tewari, Vasu oth van Willigenburg, Stephanie oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:137 year:2016 pages:179-206 extent:28 https://doi.org/10.1016/j.jcta.2015.08.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 137 2016 179-206 28 045F 510 |
language |
English |
source |
Enthalten in IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR Amsterdam [u.a.] volume:137 year:2016 pages:179-206 extent:28 |
sourceStr |
Enthalten in IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR Amsterdam [u.a.] volume:137 year:2016 pages:179-206 extent:28 |
format_phy_str_mv |
Article |
bklname |
Kardiologie Angiologie |
institution |
findex.gbv.de |
topic_facet |
Composition Littlewood–Richardson rule Quasisymmetric function Skew Schur function Schur function Symmetric function Tableaux |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
authorswithroles_txt_mv |
Bessenrodt, Christine @@aut@@ Tewari, Vasu @@oth@@ van Willigenburg, Stephanie @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV00767452X |
dewey-sort |
3510 |
id |
ELV029448654 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV029448654</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625173606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcta.2015.08.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016002000005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV029448654</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0097-3165(15)00106-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bessenrodt, Christine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">28</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Composition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Littlewood–Richardson rule</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quasisymmetric function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Skew Schur function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schur function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetric function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tableaux</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tewari, Vasu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Willigenburg, Stephanie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Bandaru, Moulika ELSEVIER</subfield><subfield code="t">IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR</subfield><subfield code="d">2022</subfield><subfield code="d">JCTA</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00767452X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:137</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:179-206</subfield><subfield code="g">extent:28</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcta.2015.08.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">137</subfield><subfield code="j">2016</subfield><subfield code="h">179-206</subfield><subfield code="g">28</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Bessenrodt, Christine |
spellingShingle |
Bessenrodt, Christine ddc 510 ddc 610 bkl 44.85 Elsevier Composition Elsevier Littlewood–Richardson rule Elsevier Quasisymmetric function Elsevier Skew Schur function Elsevier Schur function Elsevier Symmetric function Elsevier Tableaux Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions |
authorStr |
Bessenrodt, Christine |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00767452X |
format |
electronic Article |
dewey-ones |
510 - Mathematics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 610 VZ 44.85 bkl Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions Composition Elsevier Littlewood–Richardson rule Elsevier Quasisymmetric function Elsevier Skew Schur function Elsevier Schur function Elsevier Symmetric function Elsevier Tableaux Elsevier |
topic |
ddc 510 ddc 610 bkl 44.85 Elsevier Composition Elsevier Littlewood–Richardson rule Elsevier Quasisymmetric function Elsevier Skew Schur function Elsevier Schur function Elsevier Symmetric function Elsevier Tableaux |
topic_unstemmed |
ddc 510 ddc 610 bkl 44.85 Elsevier Composition Elsevier Littlewood–Richardson rule Elsevier Quasisymmetric function Elsevier Skew Schur function Elsevier Schur function Elsevier Symmetric function Elsevier Tableaux |
topic_browse |
ddc 510 ddc 610 bkl 44.85 Elsevier Composition Elsevier Littlewood–Richardson rule Elsevier Quasisymmetric function Elsevier Skew Schur function Elsevier Schur function Elsevier Symmetric function Elsevier Tableaux |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
v t vt w s v ws wsv |
hierarchy_parent_title |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
hierarchy_parent_id |
ELV00767452X |
dewey-tens |
510 - Mathematics 610 - Medicine & health |
hierarchy_top_title |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00767452X |
title |
Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions |
ctrlnum |
(DE-627)ELV029448654 (ELSEVIER)S0097-3165(15)00106-5 |
title_full |
Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions |
author_sort |
Bessenrodt, Christine |
journal |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
journalStr |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
179 |
author_browse |
Bessenrodt, Christine |
container_volume |
137 |
physical |
28 |
class |
510 510 DE-600 610 VZ 44.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bessenrodt, Christine |
doi_str_mv |
10.1016/j.jcta.2015.08.005 |
dewey-full |
510 610 |
title_sort |
littlewood–richardson rules for symmetric skew quasisymmetric schur functions |
title_auth |
Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions |
abstract |
The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. |
abstractGer |
The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. |
abstract_unstemmed |
The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions |
url |
https://doi.org/10.1016/j.jcta.2015.08.005 |
remote_bool |
true |
author2 |
Tewari, Vasu van Willigenburg, Stephanie |
author2Str |
Tewari, Vasu van Willigenburg, Stephanie |
ppnlink |
ELV00767452X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.jcta.2015.08.005 |
up_date |
2024-07-06T21:29:37.751Z |
_version_ |
1803866737477681152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV029448654</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625173606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcta.2015.08.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016002000005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV029448654</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0097-3165(15)00106-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bessenrodt, Christine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">28</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The classical Littlewood–Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood–Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood–Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Composition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Littlewood–Richardson rule</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quasisymmetric function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Skew Schur function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schur function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetric function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tableaux</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tewari, Vasu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Willigenburg, Stephanie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Bandaru, Moulika ELSEVIER</subfield><subfield code="t">IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR</subfield><subfield code="d">2022</subfield><subfield code="d">JCTA</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00767452X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:137</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:179-206</subfield><subfield code="g">extent:28</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcta.2015.08.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">137</subfield><subfield code="j">2016</subfield><subfield code="h">179-206</subfield><subfield code="g">28</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.402337 |