Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches
Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed...
Ausführliche Beschreibung
Autor*in: |
Carlsen, Henrik [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation - Zhu, Ting-Lei ELSEVIER, 2014, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:84 ; year:2016 ; pages:155-164 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.envsoft.2016.06.011 |
---|
Katalog-ID: |
ELV029468752 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV029468752 | ||
003 | DE-627 | ||
005 | 20230625173835.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.envsoft.2016.06.011 |2 doi | |
028 | 5 | 2 | |a GBVA2016002000020.pica |
035 | |a (DE-627)ELV029468752 | ||
035 | |a (ELSEVIER)S1364-8152(16)30241-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 690 |a 004 | |
082 | 0 | 4 | |a 690 |q DE-600 |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 520 |q VZ |
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 610 |a 570 |q VZ |
084 | |a 44.89 |2 bkl | ||
100 | 1 | |a Carlsen, Henrik |e verfasserin |4 aut | |
245 | 1 | 0 | |a Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches |
264 | 1 | |c 2016transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. | ||
520 | |a Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. | ||
650 | 7 | |a Robust decision making |2 Elsevier | |
650 | 7 | |a Scenario diversity analysis |2 Elsevier | |
650 | 7 | |a Climate change |2 Elsevier | |
650 | 7 | |a Scenario discovery |2 Elsevier | |
650 | 7 | |a Vulnerability based scenario analysis |2 Elsevier | |
700 | 1 | |a Lempert, Robert |4 oth | |
700 | 1 | |a Wikman-Svahn, Per |4 oth | |
700 | 1 | |a Schweizer, Vanessa |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Zhu, Ting-Lei ELSEVIER |t Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |d 2014 |g Amsterdam [u.a.] |w (DE-627)ELV017414318 |
773 | 1 | 8 | |g volume:84 |g year:2016 |g pages:155-164 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.envsoft.2016.06.011 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 44.89 |j Endokrinologie |q VZ |
951 | |a AR | ||
952 | |d 84 |j 2016 |h 155-164 |g 10 | ||
953 | |2 045F |a 690 |
author_variant |
h c hc |
---|---|
matchkey_str |
carlsenhenriklempertrobertwikmansvahnper:2016----:hoigmlstoplcrlvnseaisyobnnvleaiiy |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
44.89 |
publishDate |
2016 |
allfields |
10.1016/j.envsoft.2016.06.011 doi GBVA2016002000020.pica (DE-627)ELV029468752 (ELSEVIER)S1364-8152(16)30241-9 DE-627 ger DE-627 rakwb eng 690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Carlsen, Henrik verfasserin aut Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. Robust decision making Elsevier Scenario diversity analysis Elsevier Climate change Elsevier Scenario discovery Elsevier Vulnerability based scenario analysis Elsevier Lempert, Robert oth Wikman-Svahn, Per oth Schweizer, Vanessa oth Enthalten in Elsevier Science Zhu, Ting-Lei ELSEVIER Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation 2014 Amsterdam [u.a.] (DE-627)ELV017414318 volume:84 year:2016 pages:155-164 extent:10 https://doi.org/10.1016/j.envsoft.2016.06.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 44.89 Endokrinologie VZ AR 84 2016 155-164 10 045F 690 |
spelling |
10.1016/j.envsoft.2016.06.011 doi GBVA2016002000020.pica (DE-627)ELV029468752 (ELSEVIER)S1364-8152(16)30241-9 DE-627 ger DE-627 rakwb eng 690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Carlsen, Henrik verfasserin aut Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. Robust decision making Elsevier Scenario diversity analysis Elsevier Climate change Elsevier Scenario discovery Elsevier Vulnerability based scenario analysis Elsevier Lempert, Robert oth Wikman-Svahn, Per oth Schweizer, Vanessa oth Enthalten in Elsevier Science Zhu, Ting-Lei ELSEVIER Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation 2014 Amsterdam [u.a.] (DE-627)ELV017414318 volume:84 year:2016 pages:155-164 extent:10 https://doi.org/10.1016/j.envsoft.2016.06.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 44.89 Endokrinologie VZ AR 84 2016 155-164 10 045F 690 |
allfields_unstemmed |
10.1016/j.envsoft.2016.06.011 doi GBVA2016002000020.pica (DE-627)ELV029468752 (ELSEVIER)S1364-8152(16)30241-9 DE-627 ger DE-627 rakwb eng 690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Carlsen, Henrik verfasserin aut Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. Robust decision making Elsevier Scenario diversity analysis Elsevier Climate change Elsevier Scenario discovery Elsevier Vulnerability based scenario analysis Elsevier Lempert, Robert oth Wikman-Svahn, Per oth Schweizer, Vanessa oth Enthalten in Elsevier Science Zhu, Ting-Lei ELSEVIER Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation 2014 Amsterdam [u.a.] (DE-627)ELV017414318 volume:84 year:2016 pages:155-164 extent:10 https://doi.org/10.1016/j.envsoft.2016.06.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 44.89 Endokrinologie VZ AR 84 2016 155-164 10 045F 690 |
allfieldsGer |
10.1016/j.envsoft.2016.06.011 doi GBVA2016002000020.pica (DE-627)ELV029468752 (ELSEVIER)S1364-8152(16)30241-9 DE-627 ger DE-627 rakwb eng 690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Carlsen, Henrik verfasserin aut Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. Robust decision making Elsevier Scenario diversity analysis Elsevier Climate change Elsevier Scenario discovery Elsevier Vulnerability based scenario analysis Elsevier Lempert, Robert oth Wikman-Svahn, Per oth Schweizer, Vanessa oth Enthalten in Elsevier Science Zhu, Ting-Lei ELSEVIER Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation 2014 Amsterdam [u.a.] (DE-627)ELV017414318 volume:84 year:2016 pages:155-164 extent:10 https://doi.org/10.1016/j.envsoft.2016.06.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 44.89 Endokrinologie VZ AR 84 2016 155-164 10 045F 690 |
allfieldsSound |
10.1016/j.envsoft.2016.06.011 doi GBVA2016002000020.pica (DE-627)ELV029468752 (ELSEVIER)S1364-8152(16)30241-9 DE-627 ger DE-627 rakwb eng 690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Carlsen, Henrik verfasserin aut Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. Robust decision making Elsevier Scenario diversity analysis Elsevier Climate change Elsevier Scenario discovery Elsevier Vulnerability based scenario analysis Elsevier Lempert, Robert oth Wikman-Svahn, Per oth Schweizer, Vanessa oth Enthalten in Elsevier Science Zhu, Ting-Lei ELSEVIER Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation 2014 Amsterdam [u.a.] (DE-627)ELV017414318 volume:84 year:2016 pages:155-164 extent:10 https://doi.org/10.1016/j.envsoft.2016.06.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 44.89 Endokrinologie VZ AR 84 2016 155-164 10 045F 690 |
language |
English |
source |
Enthalten in Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation Amsterdam [u.a.] volume:84 year:2016 pages:155-164 extent:10 |
sourceStr |
Enthalten in Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation Amsterdam [u.a.] volume:84 year:2016 pages:155-164 extent:10 |
format_phy_str_mv |
Article |
bklname |
Endokrinologie |
institution |
findex.gbv.de |
topic_facet |
Robust decision making Scenario diversity analysis Climate change Scenario discovery Vulnerability based scenario analysis |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |
authorswithroles_txt_mv |
Carlsen, Henrik @@aut@@ Lempert, Robert @@oth@@ Wikman-Svahn, Per @@oth@@ Schweizer, Vanessa @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV017414318 |
dewey-sort |
3690 |
id |
ELV029468752 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV029468752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625173835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.envsoft.2016.06.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016002000020.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV029468752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1364-8152(16)30241-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.89</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Carlsen, Henrik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Robust decision making</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Scenario diversity analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Climate change</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Scenario discovery</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vulnerability based scenario analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lempert, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wikman-Svahn, Per</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schweizer, Vanessa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhu, Ting-Lei ELSEVIER</subfield><subfield code="t">Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV017414318</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:155-164</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.envsoft.2016.06.011</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.89</subfield><subfield code="j">Endokrinologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2016</subfield><subfield code="h">155-164</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
author |
Carlsen, Henrik |
spellingShingle |
Carlsen, Henrik ddc 690 ddc 004 ddc 520 ddc 620 ddc 610 bkl 44.89 Elsevier Robust decision making Elsevier Scenario diversity analysis Elsevier Climate change Elsevier Scenario discovery Elsevier Vulnerability based scenario analysis Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches |
authorStr |
Carlsen, Henrik |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV017414318 |
format |
electronic Article |
dewey-ones |
690 - Buildings 004 - Data processing & computer science 520 - Astronomy & allied sciences 620 - Engineering & allied operations 610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches Robust decision making Elsevier Scenario diversity analysis Elsevier Climate change Elsevier Scenario discovery Elsevier Vulnerability based scenario analysis Elsevier |
topic |
ddc 690 ddc 004 ddc 520 ddc 620 ddc 610 bkl 44.89 Elsevier Robust decision making Elsevier Scenario diversity analysis Elsevier Climate change Elsevier Scenario discovery Elsevier Vulnerability based scenario analysis |
topic_unstemmed |
ddc 690 ddc 004 ddc 520 ddc 620 ddc 610 bkl 44.89 Elsevier Robust decision making Elsevier Scenario diversity analysis Elsevier Climate change Elsevier Scenario discovery Elsevier Vulnerability based scenario analysis |
topic_browse |
ddc 690 ddc 004 ddc 520 ddc 620 ddc 610 bkl 44.89 Elsevier Robust decision making Elsevier Scenario diversity analysis Elsevier Climate change Elsevier Scenario discovery Elsevier Vulnerability based scenario analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
r l rl p w s pws v s vs |
hierarchy_parent_title |
Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |
hierarchy_parent_id |
ELV017414318 |
dewey-tens |
690 - Building & construction 000 - Computer science, knowledge & systems 520 - Astronomy 620 - Engineering 610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV017414318 |
title |
Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches |
ctrlnum |
(DE-627)ELV029468752 (ELSEVIER)S1364-8152(16)30241-9 |
title_full |
Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches |
author_sort |
Carlsen, Henrik |
journal |
Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |
journalStr |
Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
155 |
author_browse |
Carlsen, Henrik |
container_volume |
84 |
physical |
10 |
class |
690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Carlsen, Henrik |
doi_str_mv |
10.1016/j.envsoft.2016.06.011 |
dewey-full |
690 004 520 620 610 570 |
title_sort |
choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches |
title_auth |
Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches |
abstract |
Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. |
abstractGer |
Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. |
abstract_unstemmed |
Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 |
title_short |
Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches |
url |
https://doi.org/10.1016/j.envsoft.2016.06.011 |
remote_bool |
true |
author2 |
Lempert, Robert Wikman-Svahn, Per Schweizer, Vanessa |
author2Str |
Lempert, Robert Wikman-Svahn, Per Schweizer, Vanessa |
ppnlink |
ELV017414318 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.envsoft.2016.06.011 |
up_date |
2024-07-06T21:32:59.469Z |
_version_ |
1803866948995383296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV029468752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625173835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.envsoft.2016.06.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016002000020.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV029468752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1364-8152(16)30241-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.89</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Carlsen, Henrik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computer simulation models can generate large numbers of scenarios, far more than can be effectively utilized in most decision support applications. How can one best select a small number of scenarios to consider? One approach calls for choosing scenarios that illuminate vulnerabilities of proposed policies. Another calls for choosing scenarios that span a diverse range of futures. This paper joins these two approaches for the first time, proposing an optimization-based method for choosing a small number of relevant scenarios that combine both vulnerability and diversity. The paper applies the method to a real case involving climate resilient infrastructure for three African river basins (Volta, Orange and Zambezi). Introducing selection criteria in a stepwise manner helps examine how different criteria influence the choice of scenarios. The results suggest that combining vulnerability- and diversity-based criteria can provide a systematic and transparent method for scenario selection.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Robust decision making</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Scenario diversity analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Climate change</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Scenario discovery</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vulnerability based scenario analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lempert, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wikman-Svahn, Per</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schweizer, Vanessa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhu, Ting-Lei ELSEVIER</subfield><subfield code="t">Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV017414318</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:155-164</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.envsoft.2016.06.011</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.89</subfield><subfield code="j">Endokrinologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2016</subfield><subfield code="h">155-164</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
score |
7.4024754 |