BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification

This paper proposes an ensemble algorithm named of BPSO-Adaboost-KNN to cope with multi-class imbalanced data classification. The main idea of this algorithm is to integrate feature selection and boosting into ensemble. What’s more, we utilize a novel evaluation metric called AUCarea which is especi...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Haixiang, Guo [verfasserIn]

Yijing, Li

Yanan, Li

Xiao, Liu

Jinling, Li

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2016transfer abstract

Schlagwörter:

Imbalanced data

Feature selection

Ensemble

Classification

Oil reservoir

Umfang:

18

Übergeordnetes Werk:

Enthalten in: Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation - Liu, Xiang ELSEVIER, 2015, the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control, Amsterdam [u.a.]

Übergeordnetes Werk:

volume:49 ; year:2016 ; pages:176-193 ; extent:18

Links:

Volltext

DOI / URN:

10.1016/j.engappai.2015.09.011

Katalog-ID:

ELV029894786

Nicht das Richtige dabei?

Schreiben Sie uns!