Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills
• Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top...
Ausführliche Beschreibung
Autor*in: |
Azadi, Sama [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures - Chai, Xiuhang ELSEVIER, 2019, international journal of integrated waste management, science and technology, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2016 ; pages:220-230 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.wasman.2016.05.025 |
---|
Katalog-ID: |
ELV029910927 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV029910927 | ||
003 | DE-627 | ||
005 | 20230623203036.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.wasman.2016.05.025 |2 doi | |
028 | 5 | 2 | |a GBVA2016016000024.pica |
035 | |a (DE-627)ELV029910927 | ||
035 | |a (ELSEVIER)S0956-053X(16)30257-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 300 |a 330 | |
082 | 0 | 4 | |a 300 |q DE-600 |
082 | 0 | 4 | |a 330 |q DE-600 |
082 | 0 | 4 | |a 540 |a 660 |q VZ |
084 | |a 58.34 |2 bkl | ||
100 | 1 | |a Azadi, Sama |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills |
264 | 1 | |c 2016 | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top CCL thicknesses and the thickness of landfill cover on the leachate COD are considered. • Statistical analysis is performed to evaluate the prediction of leachate COD. | ||
650 | 7 | |a ANN |2 Elsevier | |
650 | 7 | |a COD load |2 Elsevier | |
650 | 7 | |a Landfill |2 Elsevier | |
650 | 7 | |a Prediction |2 Elsevier | |
650 | 7 | |a PCA-M5P |2 Elsevier | |
650 | 7 | |a Leachate management |2 Elsevier | |
700 | 1 | |a Amiri, Hamid |4 oth | |
700 | 1 | |a Rakhshandehroo, G. Reza |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Chai, Xiuhang ELSEVIER |t Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures |d 2019 |d international journal of integrated waste management, science and technology |g Amsterdam [u.a.] |w (DE-627)ELV001931172 |
773 | 1 | 8 | |g volume:55 |g year:2016 |g pages:220-230 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.wasman.2016.05.025 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 58.34 |j Lebensmitteltechnologie |q VZ |
951 | |a AR | ||
952 | |d 55 |j 2016 |h 220-230 |g 11 | ||
953 | |2 045F |a 300 |
author_variant |
s a sa |
---|---|
matchkey_str |
azadisamaamirihamidrakhshandehroogreza:2016----:vlaighaiiyfriiilerlewradcmpoesnrdcig |
hierarchy_sort_str |
2016 |
bklnumber |
58.34 |
publishDate |
2016 |
allfields |
10.1016/j.wasman.2016.05.025 doi GBVA2016016000024.pica (DE-627)ELV029910927 (ELSEVIER)S0956-053X(16)30257-4 DE-627 ger DE-627 rakwb eng 300 330 300 DE-600 330 DE-600 540 660 VZ 58.34 bkl Azadi, Sama verfasserin aut Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills 2016 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top CCL thicknesses and the thickness of landfill cover on the leachate COD are considered. • Statistical analysis is performed to evaluate the prediction of leachate COD. ANN Elsevier COD load Elsevier Landfill Elsevier Prediction Elsevier PCA-M5P Elsevier Leachate management Elsevier Amiri, Hamid oth Rakhshandehroo, G. Reza oth Enthalten in Elsevier Science Chai, Xiuhang ELSEVIER Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures 2019 international journal of integrated waste management, science and technology Amsterdam [u.a.] (DE-627)ELV001931172 volume:55 year:2016 pages:220-230 extent:11 https://doi.org/10.1016/j.wasman.2016.05.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.34 Lebensmitteltechnologie VZ AR 55 2016 220-230 11 045F 300 |
spelling |
10.1016/j.wasman.2016.05.025 doi GBVA2016016000024.pica (DE-627)ELV029910927 (ELSEVIER)S0956-053X(16)30257-4 DE-627 ger DE-627 rakwb eng 300 330 300 DE-600 330 DE-600 540 660 VZ 58.34 bkl Azadi, Sama verfasserin aut Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills 2016 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top CCL thicknesses and the thickness of landfill cover on the leachate COD are considered. • Statistical analysis is performed to evaluate the prediction of leachate COD. ANN Elsevier COD load Elsevier Landfill Elsevier Prediction Elsevier PCA-M5P Elsevier Leachate management Elsevier Amiri, Hamid oth Rakhshandehroo, G. Reza oth Enthalten in Elsevier Science Chai, Xiuhang ELSEVIER Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures 2019 international journal of integrated waste management, science and technology Amsterdam [u.a.] (DE-627)ELV001931172 volume:55 year:2016 pages:220-230 extent:11 https://doi.org/10.1016/j.wasman.2016.05.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.34 Lebensmitteltechnologie VZ AR 55 2016 220-230 11 045F 300 |
allfields_unstemmed |
10.1016/j.wasman.2016.05.025 doi GBVA2016016000024.pica (DE-627)ELV029910927 (ELSEVIER)S0956-053X(16)30257-4 DE-627 ger DE-627 rakwb eng 300 330 300 DE-600 330 DE-600 540 660 VZ 58.34 bkl Azadi, Sama verfasserin aut Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills 2016 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top CCL thicknesses and the thickness of landfill cover on the leachate COD are considered. • Statistical analysis is performed to evaluate the prediction of leachate COD. ANN Elsevier COD load Elsevier Landfill Elsevier Prediction Elsevier PCA-M5P Elsevier Leachate management Elsevier Amiri, Hamid oth Rakhshandehroo, G. Reza oth Enthalten in Elsevier Science Chai, Xiuhang ELSEVIER Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures 2019 international journal of integrated waste management, science and technology Amsterdam [u.a.] (DE-627)ELV001931172 volume:55 year:2016 pages:220-230 extent:11 https://doi.org/10.1016/j.wasman.2016.05.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.34 Lebensmitteltechnologie VZ AR 55 2016 220-230 11 045F 300 |
allfieldsGer |
10.1016/j.wasman.2016.05.025 doi GBVA2016016000024.pica (DE-627)ELV029910927 (ELSEVIER)S0956-053X(16)30257-4 DE-627 ger DE-627 rakwb eng 300 330 300 DE-600 330 DE-600 540 660 VZ 58.34 bkl Azadi, Sama verfasserin aut Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills 2016 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top CCL thicknesses and the thickness of landfill cover on the leachate COD are considered. • Statistical analysis is performed to evaluate the prediction of leachate COD. ANN Elsevier COD load Elsevier Landfill Elsevier Prediction Elsevier PCA-M5P Elsevier Leachate management Elsevier Amiri, Hamid oth Rakhshandehroo, G. Reza oth Enthalten in Elsevier Science Chai, Xiuhang ELSEVIER Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures 2019 international journal of integrated waste management, science and technology Amsterdam [u.a.] (DE-627)ELV001931172 volume:55 year:2016 pages:220-230 extent:11 https://doi.org/10.1016/j.wasman.2016.05.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.34 Lebensmitteltechnologie VZ AR 55 2016 220-230 11 045F 300 |
allfieldsSound |
10.1016/j.wasman.2016.05.025 doi GBVA2016016000024.pica (DE-627)ELV029910927 (ELSEVIER)S0956-053X(16)30257-4 DE-627 ger DE-627 rakwb eng 300 330 300 DE-600 330 DE-600 540 660 VZ 58.34 bkl Azadi, Sama verfasserin aut Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills 2016 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top CCL thicknesses and the thickness of landfill cover on the leachate COD are considered. • Statistical analysis is performed to evaluate the prediction of leachate COD. ANN Elsevier COD load Elsevier Landfill Elsevier Prediction Elsevier PCA-M5P Elsevier Leachate management Elsevier Amiri, Hamid oth Rakhshandehroo, G. Reza oth Enthalten in Elsevier Science Chai, Xiuhang ELSEVIER Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures 2019 international journal of integrated waste management, science and technology Amsterdam [u.a.] (DE-627)ELV001931172 volume:55 year:2016 pages:220-230 extent:11 https://doi.org/10.1016/j.wasman.2016.05.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.34 Lebensmitteltechnologie VZ AR 55 2016 220-230 11 045F 300 |
language |
English |
source |
Enthalten in Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures Amsterdam [u.a.] volume:55 year:2016 pages:220-230 extent:11 |
sourceStr |
Enthalten in Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures Amsterdam [u.a.] volume:55 year:2016 pages:220-230 extent:11 |
format_phy_str_mv |
Article |
bklname |
Lebensmitteltechnologie |
institution |
findex.gbv.de |
topic_facet |
ANN COD load Landfill Prediction PCA-M5P Leachate management |
dewey-raw |
300 |
isfreeaccess_bool |
false |
container_title |
Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures |
authorswithroles_txt_mv |
Azadi, Sama @@aut@@ Amiri, Hamid @@oth@@ Rakhshandehroo, G. Reza @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV001931172 |
dewey-sort |
3300 |
id |
ELV029910927 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV029910927</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623203036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.wasman.2016.05.025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016016000024.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV029910927</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0956-053X(16)30257-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">300</subfield><subfield code="a">330</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.34</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Azadi, Sama</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top CCL thicknesses and the thickness of landfill cover on the leachate COD are considered. • Statistical analysis is performed to evaluate the prediction of leachate COD.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ANN</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COD load</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Landfill</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Prediction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PCA-M5P</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Leachate management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amiri, Hamid</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rakhshandehroo, G. Reza</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Chai, Xiuhang ELSEVIER</subfield><subfield code="t">Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures</subfield><subfield code="d">2019</subfield><subfield code="d">international journal of integrated waste management, science and technology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001931172</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:220-230</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.wasman.2016.05.025</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.34</subfield><subfield code="j">Lebensmitteltechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2016</subfield><subfield code="h">220-230</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">300</subfield></datafield></record></collection>
|
author |
Azadi, Sama |
spellingShingle |
Azadi, Sama ddc 300 ddc 330 ddc 540 bkl 58.34 Elsevier ANN Elsevier COD load Elsevier Landfill Elsevier Prediction Elsevier PCA-M5P Elsevier Leachate management Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills |
authorStr |
Azadi, Sama |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001931172 |
format |
electronic Article |
dewey-ones |
300 - Social sciences 330 - Economics 540 - Chemistry & allied sciences 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
300 330 300 DE-600 330 DE-600 540 660 VZ 58.34 bkl Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills ANN Elsevier COD load Elsevier Landfill Elsevier Prediction Elsevier PCA-M5P Elsevier Leachate management Elsevier |
topic |
ddc 300 ddc 330 ddc 540 bkl 58.34 Elsevier ANN Elsevier COD load Elsevier Landfill Elsevier Prediction Elsevier PCA-M5P Elsevier Leachate management |
topic_unstemmed |
ddc 300 ddc 330 ddc 540 bkl 58.34 Elsevier ANN Elsevier COD load Elsevier Landfill Elsevier Prediction Elsevier PCA-M5P Elsevier Leachate management |
topic_browse |
ddc 300 ddc 330 ddc 540 bkl 58.34 Elsevier ANN Elsevier COD load Elsevier Landfill Elsevier Prediction Elsevier PCA-M5P Elsevier Leachate management |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h a ha g r r gr grr |
hierarchy_parent_title |
Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures |
hierarchy_parent_id |
ELV001931172 |
dewey-tens |
300 - Social sciences, sociology & anthropology 330 - Economics 540 - Chemistry 660 - Chemical engineering |
hierarchy_top_title |
Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001931172 |
title |
Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills |
ctrlnum |
(DE-627)ELV029910927 (ELSEVIER)S0956-053X(16)30257-4 |
title_full |
Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills |
author_sort |
Azadi, Sama |
journal |
Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures |
journalStr |
Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
220 |
author_browse |
Azadi, Sama |
container_volume |
55 |
physical |
11 |
class |
300 330 300 DE-600 330 DE-600 540 660 VZ 58.34 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Azadi, Sama |
doi_str_mv |
10.1016/j.wasman.2016.05.025 |
dewey-full |
300 330 540 660 |
title_sort |
evaluating the ability of artificial neural network and pca-m5p models in predicting leachate cod load in landfills |
title_auth |
Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills |
abstract |
• Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top CCL thicknesses and the thickness of landfill cover on the leachate COD are considered. • Statistical analysis is performed to evaluate the prediction of leachate COD. |
abstractGer |
• Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top CCL thicknesses and the thickness of landfill cover on the leachate COD are considered. • Statistical analysis is performed to evaluate the prediction of leachate COD. |
abstract_unstemmed |
• Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top CCL thicknesses and the thickness of landfill cover on the leachate COD are considered. • Statistical analysis is performed to evaluate the prediction of leachate COD. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills |
url |
https://doi.org/10.1016/j.wasman.2016.05.025 |
remote_bool |
true |
author2 |
Amiri, Hamid Rakhshandehroo, G. Reza |
author2Str |
Amiri, Hamid Rakhshandehroo, G. Reza |
ppnlink |
ELV001931172 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.wasman.2016.05.025 |
up_date |
2024-07-06T22:41:42.174Z |
_version_ |
1803871271963852800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV029910927</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623203036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.wasman.2016.05.025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016016000024.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV029910927</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0956-053X(16)30257-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">300</subfield><subfield code="a">330</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.34</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Azadi, Sama</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Leachate COD in different time and weather conditions is predicted. • Two intelligent models consisting of ANN and PCA-M5P are utilized. • Efficiency of ANN and PCA-M5P models for the prediction of COD leachate is evaluated. • Effects of deposited waste age, weight of waste, rainfall, base and top CCL thicknesses and the thickness of landfill cover on the leachate COD are considered. • Statistical analysis is performed to evaluate the prediction of leachate COD.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ANN</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COD load</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Landfill</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Prediction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PCA-M5P</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Leachate management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amiri, Hamid</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rakhshandehroo, G. Reza</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Chai, Xiuhang ELSEVIER</subfield><subfield code="t">Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures</subfield><subfield code="d">2019</subfield><subfield code="d">international journal of integrated waste management, science and technology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001931172</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:220-230</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.wasman.2016.05.025</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.34</subfield><subfield code="j">Lebensmitteltechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2016</subfield><subfield code="h">220-230</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">300</subfield></datafield></record></collection>
|
score |
7.403078 |