A parameter for a family of steady vortex ring cores
Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its...
Ausführliche Beschreibung
Autor*in: |
Morton, Thad S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Umfang: |
5 |
---|
Übergeordnetes Werk: |
Enthalten in: Global organic carbon emissions from primary sources from 1960 to 2009 - Huang, Ye ELSEVIER, 2015transfer abstract, Paris |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2016 ; pages:66-70 ; extent:5 |
Links: |
---|
DOI / URN: |
10.1016/j.euromechflu.2015.11.001 |
---|
Katalog-ID: |
ELV029932157 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV029932157 | ||
003 | DE-627 | ||
005 | 20230623203121.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.euromechflu.2015.11.001 |2 doi | |
028 | 5 | 2 | |a GBVA2016017000020.pica |
035 | |a (DE-627)ELV029932157 | ||
035 | |a (ELSEVIER)S0997-7546(15)00117-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 550 |q VZ |
082 | 0 | 4 | |a 690 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.65 |2 bkl | ||
100 | 1 | |a Morton, Thad S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A parameter for a family of steady vortex ring cores |
264 | 1 | |c 2016 | |
300 | |a 5 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its boundary. A new dimensionless mean core radius for vortex rings is presented that varies between 0 and 1 rather than 0 and the square root of 2, and requires that fewer geometrical parameters be specified in order to uniquely define the core area for each member of the family of vortex rings. | ||
650 | 7 | |a Axisymmetric vortex |2 Elsevier | |
650 | 7 | |a Hill’s spherical vortex |2 Elsevier | |
650 | 7 | |a Streamline coordinate systems |2 Elsevier | |
650 | 7 | |a Toroidal vortex ring |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n Gauthier-Villars |a Huang, Ye ELSEVIER |t Global organic carbon emissions from primary sources from 1960 to 2009 |d 2015transfer abstract |g Paris |w (DE-627)ELV01880182X |
773 | 1 | 8 | |g volume:56 |g year:2016 |g pages:66-70 |g extent:5 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.euromechflu.2015.11.001 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 44.65 |j Chirurgie |q VZ |
951 | |a AR | ||
952 | |d 56 |j 2016 |h 66-70 |g 5 | ||
953 | |2 045F |a 530 |
author_variant |
t s m ts tsm |
---|---|
matchkey_str |
mortonthads:2016----:prmtroaaiyftayo |
hierarchy_sort_str |
2016 |
bklnumber |
44.65 |
publishDate |
2016 |
allfields |
10.1016/j.euromechflu.2015.11.001 doi GBVA2016017000020.pica (DE-627)ELV029932157 (ELSEVIER)S0997-7546(15)00117-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 550 VZ 690 VZ 610 VZ 44.65 bkl Morton, Thad S. verfasserin aut A parameter for a family of steady vortex ring cores 2016 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its boundary. A new dimensionless mean core radius for vortex rings is presented that varies between 0 and 1 rather than 0 and the square root of 2, and requires that fewer geometrical parameters be specified in order to uniquely define the core area for each member of the family of vortex rings. Axisymmetric vortex Elsevier Hill’s spherical vortex Elsevier Streamline coordinate systems Elsevier Toroidal vortex ring Elsevier Enthalten in Gauthier-Villars Huang, Ye ELSEVIER Global organic carbon emissions from primary sources from 1960 to 2009 2015transfer abstract Paris (DE-627)ELV01880182X volume:56 year:2016 pages:66-70 extent:5 https://doi.org/10.1016/j.euromechflu.2015.11.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 44.65 Chirurgie VZ AR 56 2016 66-70 5 045F 530 |
spelling |
10.1016/j.euromechflu.2015.11.001 doi GBVA2016017000020.pica (DE-627)ELV029932157 (ELSEVIER)S0997-7546(15)00117-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 550 VZ 690 VZ 610 VZ 44.65 bkl Morton, Thad S. verfasserin aut A parameter for a family of steady vortex ring cores 2016 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its boundary. A new dimensionless mean core radius for vortex rings is presented that varies between 0 and 1 rather than 0 and the square root of 2, and requires that fewer geometrical parameters be specified in order to uniquely define the core area for each member of the family of vortex rings. Axisymmetric vortex Elsevier Hill’s spherical vortex Elsevier Streamline coordinate systems Elsevier Toroidal vortex ring Elsevier Enthalten in Gauthier-Villars Huang, Ye ELSEVIER Global organic carbon emissions from primary sources from 1960 to 2009 2015transfer abstract Paris (DE-627)ELV01880182X volume:56 year:2016 pages:66-70 extent:5 https://doi.org/10.1016/j.euromechflu.2015.11.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 44.65 Chirurgie VZ AR 56 2016 66-70 5 045F 530 |
allfields_unstemmed |
10.1016/j.euromechflu.2015.11.001 doi GBVA2016017000020.pica (DE-627)ELV029932157 (ELSEVIER)S0997-7546(15)00117-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 550 VZ 690 VZ 610 VZ 44.65 bkl Morton, Thad S. verfasserin aut A parameter for a family of steady vortex ring cores 2016 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its boundary. A new dimensionless mean core radius for vortex rings is presented that varies between 0 and 1 rather than 0 and the square root of 2, and requires that fewer geometrical parameters be specified in order to uniquely define the core area for each member of the family of vortex rings. Axisymmetric vortex Elsevier Hill’s spherical vortex Elsevier Streamline coordinate systems Elsevier Toroidal vortex ring Elsevier Enthalten in Gauthier-Villars Huang, Ye ELSEVIER Global organic carbon emissions from primary sources from 1960 to 2009 2015transfer abstract Paris (DE-627)ELV01880182X volume:56 year:2016 pages:66-70 extent:5 https://doi.org/10.1016/j.euromechflu.2015.11.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 44.65 Chirurgie VZ AR 56 2016 66-70 5 045F 530 |
allfieldsGer |
10.1016/j.euromechflu.2015.11.001 doi GBVA2016017000020.pica (DE-627)ELV029932157 (ELSEVIER)S0997-7546(15)00117-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 550 VZ 690 VZ 610 VZ 44.65 bkl Morton, Thad S. verfasserin aut A parameter for a family of steady vortex ring cores 2016 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its boundary. A new dimensionless mean core radius for vortex rings is presented that varies between 0 and 1 rather than 0 and the square root of 2, and requires that fewer geometrical parameters be specified in order to uniquely define the core area for each member of the family of vortex rings. Axisymmetric vortex Elsevier Hill’s spherical vortex Elsevier Streamline coordinate systems Elsevier Toroidal vortex ring Elsevier Enthalten in Gauthier-Villars Huang, Ye ELSEVIER Global organic carbon emissions from primary sources from 1960 to 2009 2015transfer abstract Paris (DE-627)ELV01880182X volume:56 year:2016 pages:66-70 extent:5 https://doi.org/10.1016/j.euromechflu.2015.11.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 44.65 Chirurgie VZ AR 56 2016 66-70 5 045F 530 |
allfieldsSound |
10.1016/j.euromechflu.2015.11.001 doi GBVA2016017000020.pica (DE-627)ELV029932157 (ELSEVIER)S0997-7546(15)00117-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 550 VZ 690 VZ 610 VZ 44.65 bkl Morton, Thad S. verfasserin aut A parameter for a family of steady vortex ring cores 2016 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its boundary. A new dimensionless mean core radius for vortex rings is presented that varies between 0 and 1 rather than 0 and the square root of 2, and requires that fewer geometrical parameters be specified in order to uniquely define the core area for each member of the family of vortex rings. Axisymmetric vortex Elsevier Hill’s spherical vortex Elsevier Streamline coordinate systems Elsevier Toroidal vortex ring Elsevier Enthalten in Gauthier-Villars Huang, Ye ELSEVIER Global organic carbon emissions from primary sources from 1960 to 2009 2015transfer abstract Paris (DE-627)ELV01880182X volume:56 year:2016 pages:66-70 extent:5 https://doi.org/10.1016/j.euromechflu.2015.11.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 44.65 Chirurgie VZ AR 56 2016 66-70 5 045F 530 |
language |
English |
source |
Enthalten in Global organic carbon emissions from primary sources from 1960 to 2009 Paris volume:56 year:2016 pages:66-70 extent:5 |
sourceStr |
Enthalten in Global organic carbon emissions from primary sources from 1960 to 2009 Paris volume:56 year:2016 pages:66-70 extent:5 |
format_phy_str_mv |
Article |
bklname |
Chirurgie |
institution |
findex.gbv.de |
topic_facet |
Axisymmetric vortex Hill’s spherical vortex Streamline coordinate systems Toroidal vortex ring |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Global organic carbon emissions from primary sources from 1960 to 2009 |
authorswithroles_txt_mv |
Morton, Thad S. @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV01880182X |
dewey-sort |
3530 |
id |
ELV029932157 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV029932157</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623203121.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.euromechflu.2015.11.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016017000020.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV029932157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0997-7546(15)00117-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morton, Thad S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A parameter for a family of steady vortex ring cores</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its boundary. A new dimensionless mean core radius for vortex rings is presented that varies between 0 and 1 rather than 0 and the square root of 2, and requires that fewer geometrical parameters be specified in order to uniquely define the core area for each member of the family of vortex rings.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Axisymmetric vortex</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hill’s spherical vortex</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Streamline coordinate systems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Toroidal vortex ring</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Gauthier-Villars</subfield><subfield code="a">Huang, Ye ELSEVIER</subfield><subfield code="t">Global organic carbon emissions from primary sources from 1960 to 2009</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="g">Paris</subfield><subfield code="w">(DE-627)ELV01880182X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:66-70</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.euromechflu.2015.11.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.65</subfield><subfield code="j">Chirurgie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2016</subfield><subfield code="h">66-70</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Morton, Thad S. |
spellingShingle |
Morton, Thad S. ddc 530 ddc 550 ddc 690 ddc 610 bkl 44.65 Elsevier Axisymmetric vortex Elsevier Hill’s spherical vortex Elsevier Streamline coordinate systems Elsevier Toroidal vortex ring A parameter for a family of steady vortex ring cores |
authorStr |
Morton, Thad S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV01880182X |
format |
electronic Article |
dewey-ones |
530 - Physics 550 - Earth sciences 690 - Buildings 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 550 VZ 690 VZ 610 VZ 44.65 bkl A parameter for a family of steady vortex ring cores Axisymmetric vortex Elsevier Hill’s spherical vortex Elsevier Streamline coordinate systems Elsevier Toroidal vortex ring Elsevier |
topic |
ddc 530 ddc 550 ddc 690 ddc 610 bkl 44.65 Elsevier Axisymmetric vortex Elsevier Hill’s spherical vortex Elsevier Streamline coordinate systems Elsevier Toroidal vortex ring |
topic_unstemmed |
ddc 530 ddc 550 ddc 690 ddc 610 bkl 44.65 Elsevier Axisymmetric vortex Elsevier Hill’s spherical vortex Elsevier Streamline coordinate systems Elsevier Toroidal vortex ring |
topic_browse |
ddc 530 ddc 550 ddc 690 ddc 610 bkl 44.65 Elsevier Axisymmetric vortex Elsevier Hill’s spherical vortex Elsevier Streamline coordinate systems Elsevier Toroidal vortex ring |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Global organic carbon emissions from primary sources from 1960 to 2009 |
hierarchy_parent_id |
ELV01880182X |
dewey-tens |
530 - Physics 550 - Earth sciences & geology 690 - Building & construction 610 - Medicine & health |
hierarchy_top_title |
Global organic carbon emissions from primary sources from 1960 to 2009 |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV01880182X |
title |
A parameter for a family of steady vortex ring cores |
ctrlnum |
(DE-627)ELV029932157 (ELSEVIER)S0997-7546(15)00117-X |
title_full |
A parameter for a family of steady vortex ring cores |
author_sort |
Morton, Thad S. |
journal |
Global organic carbon emissions from primary sources from 1960 to 2009 |
journalStr |
Global organic carbon emissions from primary sources from 1960 to 2009 |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
66 |
author_browse |
Morton, Thad S. |
container_volume |
56 |
physical |
5 |
class |
530 530 DE-600 550 VZ 690 VZ 610 VZ 44.65 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Morton, Thad S. |
doi_str_mv |
10.1016/j.euromechflu.2015.11.001 |
dewey-full |
530 550 690 610 |
title_sort |
a parameter for a family of steady vortex ring cores |
title_auth |
A parameter for a family of steady vortex ring cores |
abstract |
Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its boundary. A new dimensionless mean core radius for vortex rings is presented that varies between 0 and 1 rather than 0 and the square root of 2, and requires that fewer geometrical parameters be specified in order to uniquely define the core area for each member of the family of vortex rings. |
abstractGer |
Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its boundary. A new dimensionless mean core radius for vortex rings is presented that varies between 0 and 1 rather than 0 and the square root of 2, and requires that fewer geometrical parameters be specified in order to uniquely define the core area for each member of the family of vortex rings. |
abstract_unstemmed |
Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its boundary. A new dimensionless mean core radius for vortex rings is presented that varies between 0 and 1 rather than 0 and the square root of 2, and requires that fewer geometrical parameters be specified in order to uniquely define the core area for each member of the family of vortex rings. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 |
title_short |
A parameter for a family of steady vortex ring cores |
url |
https://doi.org/10.1016/j.euromechflu.2015.11.001 |
remote_bool |
true |
ppnlink |
ELV01880182X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.euromechflu.2015.11.001 |
up_date |
2024-07-06T22:44:58.502Z |
_version_ |
1803871477828681728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV029932157</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623203121.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.euromechflu.2015.11.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016017000020.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV029932157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0997-7546(15)00117-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morton, Thad S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A parameter for a family of steady vortex ring cores</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Streamlined orthogonal coordinates are derived for the core of Hill’s spherical vortex. Each core boundary of Norbury’s family of vortex rings is a scaled streamline from Hill’s spherical vortex. A formula is given that relates the dimensionless mean core radius of each member of this family to its boundary. A new dimensionless mean core radius for vortex rings is presented that varies between 0 and 1 rather than 0 and the square root of 2, and requires that fewer geometrical parameters be specified in order to uniquely define the core area for each member of the family of vortex rings.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Axisymmetric vortex</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hill’s spherical vortex</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Streamline coordinate systems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Toroidal vortex ring</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Gauthier-Villars</subfield><subfield code="a">Huang, Ye ELSEVIER</subfield><subfield code="t">Global organic carbon emissions from primary sources from 1960 to 2009</subfield><subfield code="d">2015transfer abstract</subfield><subfield code="g">Paris</subfield><subfield code="w">(DE-627)ELV01880182X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:66-70</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.euromechflu.2015.11.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.65</subfield><subfield code="j">Chirurgie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2016</subfield><subfield code="h">66-70</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.4003134 |