A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites
Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied...
Ausführliche Beschreibung
Autor*in: |
Cassata, W.S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
15 |
---|
Übergeordnetes Werk: |
Enthalten in: 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis - Taylor, William R. ELSEVIER, 2014, journal of the Geochemical Society and the Meteoritical Society, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:187 ; year:2016 ; day:15 ; month:08 ; pages:279-293 ; extent:15 |
Links: |
---|
DOI / URN: |
10.1016/j.gca.2016.04.045 |
---|
Katalog-ID: |
ELV030091276 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV030091276 | ||
003 | DE-627 | ||
005 | 20230625180547.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.gca.2016.04.045 |2 doi | |
028 | 5 | 2 | |a GBV00000000000179A.pica |
035 | |a (DE-627)ELV030091276 | ||
035 | |a (ELSEVIER)S0016-7037(16)30214-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 550 | |
082 | 0 | 4 | |a 550 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 35.70 |2 bkl | ||
084 | |a 42.12 |2 bkl | ||
084 | |a 42.15 |2 bkl | ||
100 | 1 | |a Cassata, W.S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites |
264 | 1 | |c 2016transfer abstract | |
300 | |a 15 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. | ||
520 | |a Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. | ||
650 | 7 | |a Mars |2 Elsevier | |
650 | 7 | |a 40Ar/39Ar |2 Elsevier | |
650 | 7 | |a Shergottite |2 Elsevier | |
650 | 7 | |a Cosmogenic |2 Elsevier | |
650 | 7 | |a Chronology |2 Elsevier | |
700 | 1 | |a Borg, L.E. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Taylor, William R. ELSEVIER |t 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |d 2014 |d journal of the Geochemical Society and the Meteoritical Society |g New York, NY [u.a.] |w (DE-627)ELV012653268 |
773 | 1 | 8 | |g volume:187 |g year:2016 |g day:15 |g month:08 |g pages:279-293 |g extent:15 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.gca.2016.04.045 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.70 |j Biochemie: Allgemeines |q VZ |
936 | b | k | |a 42.12 |j Biophysik |q VZ |
936 | b | k | |a 42.15 |j Zellbiologie |q VZ |
951 | |a AR | ||
952 | |d 187 |j 2016 |b 15 |c 0815 |h 279-293 |g 15 | ||
953 | |2 045F |a 550 |
author_variant |
w c wc |
---|---|
matchkey_str |
cassatawsborgle:2016----:nwprahoomgncorcini4a3acrnmtymlctosot |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
35.70 42.12 42.15 |
publishDate |
2016 |
allfields |
10.1016/j.gca.2016.04.045 doi GBV00000000000179A.pica (DE-627)ELV030091276 (ELSEVIER)S0016-7037(16)30214-9 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Cassata, W.S. verfasserin aut A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites 2016transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. Mars Elsevier 40Ar/39Ar Elsevier Shergottite Elsevier Cosmogenic Elsevier Chronology Elsevier Borg, L.E. oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:187 year:2016 day:15 month:08 pages:279-293 extent:15 https://doi.org/10.1016/j.gca.2016.04.045 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 187 2016 15 0815 279-293 15 045F 550 |
spelling |
10.1016/j.gca.2016.04.045 doi GBV00000000000179A.pica (DE-627)ELV030091276 (ELSEVIER)S0016-7037(16)30214-9 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Cassata, W.S. verfasserin aut A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites 2016transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. Mars Elsevier 40Ar/39Ar Elsevier Shergottite Elsevier Cosmogenic Elsevier Chronology Elsevier Borg, L.E. oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:187 year:2016 day:15 month:08 pages:279-293 extent:15 https://doi.org/10.1016/j.gca.2016.04.045 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 187 2016 15 0815 279-293 15 045F 550 |
allfields_unstemmed |
10.1016/j.gca.2016.04.045 doi GBV00000000000179A.pica (DE-627)ELV030091276 (ELSEVIER)S0016-7037(16)30214-9 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Cassata, W.S. verfasserin aut A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites 2016transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. Mars Elsevier 40Ar/39Ar Elsevier Shergottite Elsevier Cosmogenic Elsevier Chronology Elsevier Borg, L.E. oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:187 year:2016 day:15 month:08 pages:279-293 extent:15 https://doi.org/10.1016/j.gca.2016.04.045 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 187 2016 15 0815 279-293 15 045F 550 |
allfieldsGer |
10.1016/j.gca.2016.04.045 doi GBV00000000000179A.pica (DE-627)ELV030091276 (ELSEVIER)S0016-7037(16)30214-9 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Cassata, W.S. verfasserin aut A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites 2016transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. Mars Elsevier 40Ar/39Ar Elsevier Shergottite Elsevier Cosmogenic Elsevier Chronology Elsevier Borg, L.E. oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:187 year:2016 day:15 month:08 pages:279-293 extent:15 https://doi.org/10.1016/j.gca.2016.04.045 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 187 2016 15 0815 279-293 15 045F 550 |
allfieldsSound |
10.1016/j.gca.2016.04.045 doi GBV00000000000179A.pica (DE-627)ELV030091276 (ELSEVIER)S0016-7037(16)30214-9 DE-627 ger DE-627 rakwb eng 550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Cassata, W.S. verfasserin aut A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites 2016transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. Mars Elsevier 40Ar/39Ar Elsevier Shergottite Elsevier Cosmogenic Elsevier Chronology Elsevier Borg, L.E. oth Enthalten in Elsevier Taylor, William R. ELSEVIER 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis 2014 journal of the Geochemical Society and the Meteoritical Society New York, NY [u.a.] (DE-627)ELV012653268 volume:187 year:2016 day:15 month:08 pages:279-293 extent:15 https://doi.org/10.1016/j.gca.2016.04.045 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 187 2016 15 0815 279-293 15 045F 550 |
language |
English |
source |
Enthalten in 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis New York, NY [u.a.] volume:187 year:2016 day:15 month:08 pages:279-293 extent:15 |
sourceStr |
Enthalten in 109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis New York, NY [u.a.] volume:187 year:2016 day:15 month:08 pages:279-293 extent:15 |
format_phy_str_mv |
Article |
bklname |
Biochemie: Allgemeines Biophysik Zellbiologie |
institution |
findex.gbv.de |
topic_facet |
Mars 40Ar/39Ar Shergottite Cosmogenic Chronology |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
authorswithroles_txt_mv |
Cassata, W.S. @@aut@@ Borg, L.E. @@oth@@ |
publishDateDaySort_date |
2016-01-15T00:00:00Z |
hierarchy_top_id |
ELV012653268 |
dewey-sort |
3550 |
id |
ELV030091276 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV030091276</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625180547.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gca.2016.04.045</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000179A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV030091276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7037(16)30214-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cassata, W.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mars</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">40Ar/39Ar</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shergottite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cosmogenic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chronology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borg, L.E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Taylor, William R. ELSEVIER</subfield><subfield code="t">109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis</subfield><subfield code="d">2014</subfield><subfield code="d">journal of the Geochemical Society and the Meteoritical Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV012653268</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:187</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:15</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:279-293</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gca.2016.04.045</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.15</subfield><subfield code="j">Zellbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">187</subfield><subfield code="j">2016</subfield><subfield code="b">15</subfield><subfield code="c">0815</subfield><subfield code="h">279-293</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">550</subfield></datafield></record></collection>
|
author |
Cassata, W.S. |
spellingShingle |
Cassata, W.S. ddc 550 ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Mars Elsevier 40Ar/39Ar Elsevier Shergottite Elsevier Cosmogenic Elsevier Chronology A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites |
authorStr |
Cassata, W.S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012653268 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites Mars Elsevier 40Ar/39Ar Elsevier Shergottite Elsevier Cosmogenic Elsevier Chronology Elsevier |
topic |
ddc 550 ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Mars Elsevier 40Ar/39Ar Elsevier Shergottite Elsevier Cosmogenic Elsevier Chronology |
topic_unstemmed |
ddc 550 ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Mars Elsevier 40Ar/39Ar Elsevier Shergottite Elsevier Cosmogenic Elsevier Chronology |
topic_browse |
ddc 550 ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Mars Elsevier 40Ar/39Ar Elsevier Shergottite Elsevier Cosmogenic Elsevier Chronology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l b lb |
hierarchy_parent_title |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
hierarchy_parent_id |
ELV012653268 |
dewey-tens |
550 - Earth sciences & geology 610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012653268 |
title |
A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites |
ctrlnum |
(DE-627)ELV030091276 (ELSEVIER)S0016-7037(16)30214-9 |
title_full |
A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites |
author_sort |
Cassata, W.S. |
journal |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
journalStr |
109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
279 |
author_browse |
Cassata, W.S. |
container_volume |
187 |
physical |
15 |
class |
550 550 DE-600 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cassata, W.S. |
doi_str_mv |
10.1016/j.gca.2016.04.045 |
dewey-full |
550 610 570 |
title_sort |
a new approach to cosmogenic corrections in 40ar/39ar chronometry: implications for the ages of martian meteorites |
title_auth |
A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites |
abstract |
Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. |
abstractGer |
Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. |
abstract_unstemmed |
Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites |
url |
https://doi.org/10.1016/j.gca.2016.04.045 |
remote_bool |
true |
author2 |
Borg, L.E. |
author2Str |
Borg, L.E. |
ppnlink |
ELV012653268 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.gca.2016.04.045 |
up_date |
2024-07-06T16:40:01.985Z |
_version_ |
1803848517666471936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV030091276</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625180547.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gca.2016.04.045</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000179A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV030091276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7037(16)30214-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cassata, W.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188±17 and 184±17Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mars</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">40Ar/39Ar</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shergottite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cosmogenic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chronology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borg, L.E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Taylor, William R. ELSEVIER</subfield><subfield code="t">109 Discovery of Novel DNA Methylation Markers for the Detection of Colorectal Neoplasia: Selection by Methylome-Wide Analysis</subfield><subfield code="d">2014</subfield><subfield code="d">journal of the Geochemical Society and the Meteoritical Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV012653268</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:187</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:15</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:279-293</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gca.2016.04.045</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.15</subfield><subfield code="j">Zellbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">187</subfield><subfield code="j">2016</subfield><subfield code="b">15</subfield><subfield code="c">0815</subfield><subfield code="h">279-293</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">550</subfield></datafield></record></collection>
|
score |
7.4001484 |