Experimental investigation of wood decking assemblies exposed to firebrand showers
Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability b...
Ausführliche Beschreibung
Autor*in: |
Manzello, Samuel L. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries - Ebrahimi Khabbazi, A. ELSEVIER, 2015, official journal of the International Society for Fire Safety Science, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:92 ; year:2017 ; pages:122-131 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.firesaf.2017.05.019 |
---|
Katalog-ID: |
ELV030516129 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV030516129 | ||
003 | DE-627 | ||
005 | 20230625181917.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.firesaf.2017.05.019 |2 doi | |
028 | 5 | 2 | |a GBVA2017012000014.pica |
035 | |a (DE-627)ELV030516129 | ||
035 | |a (ELSEVIER)S0379-7112(17)30082-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 690 | |
082 | 0 | 4 | |a 690 |q DE-600 |
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 660 |a 670 |q VZ |
084 | |a 51.45 |2 bkl | ||
084 | |a 51.60 |2 bkl | ||
084 | |a 33.61 |2 bkl | ||
084 | |a 35.90 |2 bkl | ||
100 | 1 | |a Manzello, Samuel L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Experimental investigation of wood decking assemblies exposed to firebrand showers |
264 | 1 | |c 2017transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. | ||
520 | |a Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. | ||
700 | 1 | |a Suzuki, Sayaka |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Ebrahimi Khabbazi, A. ELSEVIER |t Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries |d 2015 |d official journal of the International Society for Fire Safety Science |g New York, NY [u.a.] |w (DE-627)ELV013301012 |
773 | 1 | 8 | |g volume:92 |g year:2017 |g pages:122-131 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.firesaf.2017.05.019 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 51.45 |j Werkstoffe mit besonderen Eigenschaften |q VZ |
936 | b | k | |a 51.60 |j Keramische Werkstoffe |j Hartstoffe |x Werkstoffkunde |q VZ |
936 | b | k | |a 33.61 |j Festkörperphysik |q VZ |
936 | b | k | |a 35.90 |j Festkörperchemie |q VZ |
951 | |a AR | ||
952 | |d 92 |j 2017 |h 122-131 |g 10 | ||
953 | |2 045F |a 690 |
author_variant |
s l m sl slm |
---|---|
matchkey_str |
manzellosamuellsuzukisayaka:2017----:xeietlnetgtoowodcigsebisxoe |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
51.45 51.60 33.61 35.90 |
publishDate |
2017 |
allfields |
10.1016/j.firesaf.2017.05.019 doi GBVA2017012000014.pica (DE-627)ELV030516129 (ELSEVIER)S0379-7112(17)30082-6 DE-627 ger DE-627 rakwb eng 690 690 DE-600 510 VZ 660 670 VZ 51.45 bkl 51.60 bkl 33.61 bkl 35.90 bkl Manzello, Samuel L. verfasserin aut Experimental investigation of wood decking assemblies exposed to firebrand showers 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. Suzuki, Sayaka oth Enthalten in Elsevier Ebrahimi Khabbazi, A. ELSEVIER Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries 2015 official journal of the International Society for Fire Safety Science New York, NY [u.a.] (DE-627)ELV013301012 volume:92 year:2017 pages:122-131 extent:10 https://doi.org/10.1016/j.firesaf.2017.05.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 51.45 Werkstoffe mit besonderen Eigenschaften VZ 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 92 2017 122-131 10 045F 690 |
spelling |
10.1016/j.firesaf.2017.05.019 doi GBVA2017012000014.pica (DE-627)ELV030516129 (ELSEVIER)S0379-7112(17)30082-6 DE-627 ger DE-627 rakwb eng 690 690 DE-600 510 VZ 660 670 VZ 51.45 bkl 51.60 bkl 33.61 bkl 35.90 bkl Manzello, Samuel L. verfasserin aut Experimental investigation of wood decking assemblies exposed to firebrand showers 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. Suzuki, Sayaka oth Enthalten in Elsevier Ebrahimi Khabbazi, A. ELSEVIER Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries 2015 official journal of the International Society for Fire Safety Science New York, NY [u.a.] (DE-627)ELV013301012 volume:92 year:2017 pages:122-131 extent:10 https://doi.org/10.1016/j.firesaf.2017.05.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 51.45 Werkstoffe mit besonderen Eigenschaften VZ 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 92 2017 122-131 10 045F 690 |
allfields_unstemmed |
10.1016/j.firesaf.2017.05.019 doi GBVA2017012000014.pica (DE-627)ELV030516129 (ELSEVIER)S0379-7112(17)30082-6 DE-627 ger DE-627 rakwb eng 690 690 DE-600 510 VZ 660 670 VZ 51.45 bkl 51.60 bkl 33.61 bkl 35.90 bkl Manzello, Samuel L. verfasserin aut Experimental investigation of wood decking assemblies exposed to firebrand showers 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. Suzuki, Sayaka oth Enthalten in Elsevier Ebrahimi Khabbazi, A. ELSEVIER Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries 2015 official journal of the International Society for Fire Safety Science New York, NY [u.a.] (DE-627)ELV013301012 volume:92 year:2017 pages:122-131 extent:10 https://doi.org/10.1016/j.firesaf.2017.05.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 51.45 Werkstoffe mit besonderen Eigenschaften VZ 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 92 2017 122-131 10 045F 690 |
allfieldsGer |
10.1016/j.firesaf.2017.05.019 doi GBVA2017012000014.pica (DE-627)ELV030516129 (ELSEVIER)S0379-7112(17)30082-6 DE-627 ger DE-627 rakwb eng 690 690 DE-600 510 VZ 660 670 VZ 51.45 bkl 51.60 bkl 33.61 bkl 35.90 bkl Manzello, Samuel L. verfasserin aut Experimental investigation of wood decking assemblies exposed to firebrand showers 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. Suzuki, Sayaka oth Enthalten in Elsevier Ebrahimi Khabbazi, A. ELSEVIER Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries 2015 official journal of the International Society for Fire Safety Science New York, NY [u.a.] (DE-627)ELV013301012 volume:92 year:2017 pages:122-131 extent:10 https://doi.org/10.1016/j.firesaf.2017.05.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 51.45 Werkstoffe mit besonderen Eigenschaften VZ 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 92 2017 122-131 10 045F 690 |
allfieldsSound |
10.1016/j.firesaf.2017.05.019 doi GBVA2017012000014.pica (DE-627)ELV030516129 (ELSEVIER)S0379-7112(17)30082-6 DE-627 ger DE-627 rakwb eng 690 690 DE-600 510 VZ 660 670 VZ 51.45 bkl 51.60 bkl 33.61 bkl 35.90 bkl Manzello, Samuel L. verfasserin aut Experimental investigation of wood decking assemblies exposed to firebrand showers 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. Suzuki, Sayaka oth Enthalten in Elsevier Ebrahimi Khabbazi, A. ELSEVIER Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries 2015 official journal of the International Society for Fire Safety Science New York, NY [u.a.] (DE-627)ELV013301012 volume:92 year:2017 pages:122-131 extent:10 https://doi.org/10.1016/j.firesaf.2017.05.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 51.45 Werkstoffe mit besonderen Eigenschaften VZ 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 92 2017 122-131 10 045F 690 |
language |
English |
source |
Enthalten in Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries New York, NY [u.a.] volume:92 year:2017 pages:122-131 extent:10 |
sourceStr |
Enthalten in Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries New York, NY [u.a.] volume:92 year:2017 pages:122-131 extent:10 |
format_phy_str_mv |
Article |
bklname |
Werkstoffe mit besonderen Eigenschaften Keramische Werkstoffe Hartstoffe Festkörperphysik Festkörperchemie |
institution |
findex.gbv.de |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries |
authorswithroles_txt_mv |
Manzello, Samuel L. @@aut@@ Suzuki, Sayaka @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV013301012 |
dewey-sort |
3690 |
id |
ELV030516129 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV030516129</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625181917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.firesaf.2017.05.019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017012000014.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV030516129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0379-7112(17)30082-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manzello, Samuel L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental investigation of wood decking assemblies exposed to firebrand showers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki, Sayaka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Ebrahimi Khabbazi, A. ELSEVIER</subfield><subfield code="t">Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries</subfield><subfield code="d">2015</subfield><subfield code="d">official journal of the International Society for Fire Safety Science</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV013301012</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:92</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:122-131</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.firesaf.2017.05.019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">92</subfield><subfield code="j">2017</subfield><subfield code="h">122-131</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
author |
Manzello, Samuel L. |
spellingShingle |
Manzello, Samuel L. ddc 690 ddc 510 ddc 660 bkl 51.45 bkl 51.60 bkl 33.61 bkl 35.90 Experimental investigation of wood decking assemblies exposed to firebrand showers |
authorStr |
Manzello, Samuel L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013301012 |
format |
electronic Article |
dewey-ones |
690 - Buildings 510 - Mathematics 660 - Chemical engineering 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 690 DE-600 510 VZ 660 670 VZ 51.45 bkl 51.60 bkl 33.61 bkl 35.90 bkl Experimental investigation of wood decking assemblies exposed to firebrand showers |
topic |
ddc 690 ddc 510 ddc 660 bkl 51.45 bkl 51.60 bkl 33.61 bkl 35.90 |
topic_unstemmed |
ddc 690 ddc 510 ddc 660 bkl 51.45 bkl 51.60 bkl 33.61 bkl 35.90 |
topic_browse |
ddc 690 ddc 510 ddc 660 bkl 51.45 bkl 51.60 bkl 33.61 bkl 35.90 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s s ss |
hierarchy_parent_title |
Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries |
hierarchy_parent_id |
ELV013301012 |
dewey-tens |
690 - Building & construction 510 - Mathematics 660 - Chemical engineering 670 - Manufacturing |
hierarchy_top_title |
Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013301012 |
title |
Experimental investigation of wood decking assemblies exposed to firebrand showers |
ctrlnum |
(DE-627)ELV030516129 (ELSEVIER)S0379-7112(17)30082-6 |
title_full |
Experimental investigation of wood decking assemblies exposed to firebrand showers |
author_sort |
Manzello, Samuel L. |
journal |
Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries |
journalStr |
Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
122 |
author_browse |
Manzello, Samuel L. |
container_volume |
92 |
physical |
10 |
class |
690 690 DE-600 510 VZ 660 670 VZ 51.45 bkl 51.60 bkl 33.61 bkl 35.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Manzello, Samuel L. |
doi_str_mv |
10.1016/j.firesaf.2017.05.019 |
dewey-full |
690 510 660 670 |
title_sort |
experimental investigation of wood decking assemblies exposed to firebrand showers |
title_auth |
Experimental investigation of wood decking assemblies exposed to firebrand showers |
abstract |
Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. |
abstractGer |
Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. |
abstract_unstemmed |
Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 |
title_short |
Experimental investigation of wood decking assemblies exposed to firebrand showers |
url |
https://doi.org/10.1016/j.firesaf.2017.05.019 |
remote_bool |
true |
author2 |
Suzuki, Sayaka |
author2Str |
Suzuki, Sayaka |
ppnlink |
ELV013301012 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.firesaf.2017.05.019 |
up_date |
2024-07-06T17:47:12.585Z |
_version_ |
1803852744057946112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV030516129</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625181917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.firesaf.2017.05.019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017012000014.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV030516129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0379-7112(17)30082-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manzello, Samuel L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental investigation of wood decking assemblies exposed to firebrand showers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki, Sayaka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Ebrahimi Khabbazi, A. ELSEVIER</subfield><subfield code="t">Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries</subfield><subfield code="d">2015</subfield><subfield code="d">official journal of the International Society for Fire Safety Science</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV013301012</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:92</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:122-131</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.firesaf.2017.05.019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">92</subfield><subfield code="j">2017</subfield><subfield code="h">122-131</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
score |
7.402733 |