PSDVec: A toolbox for incremental and scalable word embedding
PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite...
Ausführliche Beschreibung
Autor*in: |
Li, Shaohua [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
5 |
---|
Übergeordnetes Werk: |
Enthalten in: The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast - Liu, Yang ELSEVIER, 2018, an international journal, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:237 ; year:2017 ; day:10 ; month:05 ; pages:405-409 ; extent:5 |
Links: |
---|
DOI / URN: |
10.1016/j.neucom.2016.05.093 |
---|
Katalog-ID: |
ELV030576962 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV030576962 | ||
003 | DE-627 | ||
005 | 20230625182043.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neucom.2016.05.093 |2 doi | |
028 | 5 | 2 | |a GBV00000000000109A.pica |
035 | |a (DE-627)ELV030576962 | ||
035 | |a (ELSEVIER)S0925-2312(16)30685-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 610 | |
082 | 0 | 4 | |a 610 |q DE-600 |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 35.70 |2 bkl | ||
084 | |a 42.12 |2 bkl | ||
100 | 1 | |a Li, Shaohua |e verfasserin |4 aut | |
245 | 1 | 0 | |a PSDVec: A toolbox for incremental and scalable word embedding |
264 | 1 | |c 2017transfer abstract | |
300 | |a 5 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. | ||
520 | |a PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. | ||
650 | 7 | |a Incremental learning |2 Elsevier | |
650 | 7 | |a Word embedding |2 Elsevier | |
650 | 7 | |a Matrix factorization |2 Elsevier | |
700 | 1 | |a Zhu, Jun |4 oth | |
700 | 1 | |a Miao, Chunyan |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Liu, Yang ELSEVIER |t The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |d 2018 |d an international journal |g Amsterdam |w (DE-627)ELV002603926 |
773 | 1 | 8 | |g volume:237 |g year:2017 |g day:10 |g month:05 |g pages:405-409 |g extent:5 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.neucom.2016.05.093 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.70 |j Biochemie: Allgemeines |q VZ |
936 | b | k | |a 42.12 |j Biophysik |q VZ |
951 | |a AR | ||
952 | |d 237 |j 2017 |b 10 |c 0510 |h 405-409 |g 5 | ||
953 | |2 045F |a 610 |
author_variant |
s l sl |
---|---|
matchkey_str |
lishaohuazhujunmiaochunyan:2017----:svctobxoiceetlnsaal |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
35.70 42.12 |
publishDate |
2017 |
allfields |
10.1016/j.neucom.2016.05.093 doi GBV00000000000109A.pica (DE-627)ELV030576962 (ELSEVIER)S0925-2312(16)30685-3 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Li, Shaohua verfasserin aut PSDVec: A toolbox for incremental and scalable word embedding 2017transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. Incremental learning Elsevier Word embedding Elsevier Matrix factorization Elsevier Zhu, Jun oth Miao, Chunyan oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:237 year:2017 day:10 month:05 pages:405-409 extent:5 https://doi.org/10.1016/j.neucom.2016.05.093 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 237 2017 10 0510 405-409 5 045F 610 |
spelling |
10.1016/j.neucom.2016.05.093 doi GBV00000000000109A.pica (DE-627)ELV030576962 (ELSEVIER)S0925-2312(16)30685-3 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Li, Shaohua verfasserin aut PSDVec: A toolbox for incremental and scalable word embedding 2017transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. Incremental learning Elsevier Word embedding Elsevier Matrix factorization Elsevier Zhu, Jun oth Miao, Chunyan oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:237 year:2017 day:10 month:05 pages:405-409 extent:5 https://doi.org/10.1016/j.neucom.2016.05.093 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 237 2017 10 0510 405-409 5 045F 610 |
allfields_unstemmed |
10.1016/j.neucom.2016.05.093 doi GBV00000000000109A.pica (DE-627)ELV030576962 (ELSEVIER)S0925-2312(16)30685-3 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Li, Shaohua verfasserin aut PSDVec: A toolbox for incremental and scalable word embedding 2017transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. Incremental learning Elsevier Word embedding Elsevier Matrix factorization Elsevier Zhu, Jun oth Miao, Chunyan oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:237 year:2017 day:10 month:05 pages:405-409 extent:5 https://doi.org/10.1016/j.neucom.2016.05.093 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 237 2017 10 0510 405-409 5 045F 610 |
allfieldsGer |
10.1016/j.neucom.2016.05.093 doi GBV00000000000109A.pica (DE-627)ELV030576962 (ELSEVIER)S0925-2312(16)30685-3 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Li, Shaohua verfasserin aut PSDVec: A toolbox for incremental and scalable word embedding 2017transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. Incremental learning Elsevier Word embedding Elsevier Matrix factorization Elsevier Zhu, Jun oth Miao, Chunyan oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:237 year:2017 day:10 month:05 pages:405-409 extent:5 https://doi.org/10.1016/j.neucom.2016.05.093 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 237 2017 10 0510 405-409 5 045F 610 |
allfieldsSound |
10.1016/j.neucom.2016.05.093 doi GBV00000000000109A.pica (DE-627)ELV030576962 (ELSEVIER)S0925-2312(16)30685-3 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Li, Shaohua verfasserin aut PSDVec: A toolbox for incremental and scalable word embedding 2017transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. Incremental learning Elsevier Word embedding Elsevier Matrix factorization Elsevier Zhu, Jun oth Miao, Chunyan oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:237 year:2017 day:10 month:05 pages:405-409 extent:5 https://doi.org/10.1016/j.neucom.2016.05.093 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 237 2017 10 0510 405-409 5 045F 610 |
language |
English |
source |
Enthalten in The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast Amsterdam volume:237 year:2017 day:10 month:05 pages:405-409 extent:5 |
sourceStr |
Enthalten in The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast Amsterdam volume:237 year:2017 day:10 month:05 pages:405-409 extent:5 |
format_phy_str_mv |
Article |
bklname |
Biochemie: Allgemeines Biophysik |
institution |
findex.gbv.de |
topic_facet |
Incremental learning Word embedding Matrix factorization |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
authorswithroles_txt_mv |
Li, Shaohua @@aut@@ Zhu, Jun @@oth@@ Miao, Chunyan @@oth@@ |
publishDateDaySort_date |
2017-01-10T00:00:00Z |
hierarchy_top_id |
ELV002603926 |
dewey-sort |
3610 |
id |
ELV030576962 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV030576962</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625182043.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neucom.2016.05.093</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000109A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV030576962</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-2312(16)30685-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shaohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">PSDVec: A toolbox for incremental and scalable word embedding</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Incremental learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Word embedding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrix factorization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miao, Chunyan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Yang ELSEVIER</subfield><subfield code="t">The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV002603926</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:237</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:10</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:405-409</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neucom.2016.05.093</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">237</subfield><subfield code="j">2017</subfield><subfield code="b">10</subfield><subfield code="c">0510</subfield><subfield code="h">405-409</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
author |
Li, Shaohua |
spellingShingle |
Li, Shaohua ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Incremental learning Elsevier Word embedding Elsevier Matrix factorization PSDVec: A toolbox for incremental and scalable word embedding |
authorStr |
Li, Shaohua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002603926 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl PSDVec: A toolbox for incremental and scalable word embedding Incremental learning Elsevier Word embedding Elsevier Matrix factorization Elsevier |
topic |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Incremental learning Elsevier Word embedding Elsevier Matrix factorization |
topic_unstemmed |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Incremental learning Elsevier Word embedding Elsevier Matrix factorization |
topic_browse |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Incremental learning Elsevier Word embedding Elsevier Matrix factorization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j z jz c m cm |
hierarchy_parent_title |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
hierarchy_parent_id |
ELV002603926 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002603926 |
title |
PSDVec: A toolbox for incremental and scalable word embedding |
ctrlnum |
(DE-627)ELV030576962 (ELSEVIER)S0925-2312(16)30685-3 |
title_full |
PSDVec: A toolbox for incremental and scalable word embedding |
author_sort |
Li, Shaohua |
journal |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
journalStr |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
405 |
author_browse |
Li, Shaohua |
container_volume |
237 |
physical |
5 |
class |
610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Shaohua |
doi_str_mv |
10.1016/j.neucom.2016.05.093 |
dewey-full |
610 570 |
title_sort |
psdvec: a toolbox for incremental and scalable word embedding |
title_auth |
PSDVec: A toolbox for incremental and scalable word embedding |
abstract |
PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. |
abstractGer |
PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. |
abstract_unstemmed |
PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
PSDVec: A toolbox for incremental and scalable word embedding |
url |
https://doi.org/10.1016/j.neucom.2016.05.093 |
remote_bool |
true |
author2 |
Zhu, Jun Miao, Chunyan |
author2Str |
Zhu, Jun Miao, Chunyan |
ppnlink |
ELV002603926 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.neucom.2016.05.093 |
up_date |
2024-07-06T17:56:06.744Z |
_version_ |
1803853304163205120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV030576962</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625182043.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neucom.2016.05.093</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000109A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV030576962</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-2312(16)30685-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shaohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">PSDVec: A toolbox for incremental and scalable word embedding</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Incremental learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Word embedding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrix factorization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miao, Chunyan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Yang ELSEVIER</subfield><subfield code="t">The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV002603926</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:237</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:10</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:405-409</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neucom.2016.05.093</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">237</subfield><subfield code="j">2017</subfield><subfield code="b">10</subfield><subfield code="c">0510</subfield><subfield code="h">405-409</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
score |
7.4010506 |