A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field
The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in differen...
Ausführliche Beschreibung
Autor*in: |
Xiao, Tianbai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
17 |
---|
Übergeordnetes Werk: |
Enthalten in: Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty - Miranda, Regina ELSEVIER, 2023, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:332 ; year:2017 ; day:1 ; month:03 ; pages:475-491 ; extent:17 |
Links: |
---|
DOI / URN: |
10.1016/j.jcp.2016.12.022 |
---|
Katalog-ID: |
ELV030793580 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV030793580 | ||
003 | DE-627 | ||
005 | 20230625182748.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcp.2016.12.022 |2 doi | |
028 | 5 | 2 | |a GBV00000000000100A.pica |
035 | |a (DE-627)ELV030793580 | ||
035 | |a (ELSEVIER)S0021-9991(16)30675-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 |a 510 |a 000 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 000 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.91 |2 bkl | ||
100 | 1 | |a Xiao, Tianbai |e verfasserin |4 aut | |
245 | 1 | 0 | |a A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field |
264 | 1 | |c 2017transfer abstract | |
300 | |a 17 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. | ||
520 | |a The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. | ||
650 | 7 | |a Gravitational field |2 Elsevier | |
650 | 7 | |a Multi-scale flow |2 Elsevier | |
650 | 7 | |a Non-equilibrium phenomena |2 Elsevier | |
650 | 7 | |a Well-balanced property |2 Elsevier | |
650 | 7 | |a Unified gas-kinetic scheme |2 Elsevier | |
700 | 1 | |a Cai, Qingdong |4 oth | |
700 | 1 | |a Xu, Kun |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Miranda, Regina ELSEVIER |t Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty |d 2023 |g Amsterdam |w (DE-627)ELV010178430 |
773 | 1 | 8 | |g volume:332 |g year:2017 |g day:1 |g month:03 |g pages:475-491 |g extent:17 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jcp.2016.12.022 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_90 | ||
936 | b | k | |a 44.91 |j Psychiatrie |j Psychopathologie |q VZ |
951 | |a AR | ||
952 | |d 332 |j 2017 |b 1 |c 0301 |h 475-491 |g 17 | ||
953 | |2 045F |a 530 |
author_variant |
t x tx |
---|---|
matchkey_str |
xiaotianbaicaiqingdongxukun:2017----:wlblneuiidakntcceeomliclfotasot |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
44.91 |
publishDate |
2017 |
allfields |
10.1016/j.jcp.2016.12.022 doi GBV00000000000100A.pica (DE-627)ELV030793580 (ELSEVIER)S0021-9991(16)30675-1 DE-627 ger DE-627 rakwb eng 530 510 000 530 DE-600 510 DE-600 000 DE-600 610 VZ 44.91 bkl Xiao, Tianbai verfasserin aut A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field 2017transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. Gravitational field Elsevier Multi-scale flow Elsevier Non-equilibrium phenomena Elsevier Well-balanced property Elsevier Unified gas-kinetic scheme Elsevier Cai, Qingdong oth Xu, Kun oth Enthalten in Elsevier Miranda, Regina ELSEVIER Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty 2023 Amsterdam (DE-627)ELV010178430 volume:332 year:2017 day:1 month:03 pages:475-491 extent:17 https://doi.org/10.1016/j.jcp.2016.12.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_24 GBV_ILN_90 44.91 Psychiatrie Psychopathologie VZ AR 332 2017 1 0301 475-491 17 045F 530 |
spelling |
10.1016/j.jcp.2016.12.022 doi GBV00000000000100A.pica (DE-627)ELV030793580 (ELSEVIER)S0021-9991(16)30675-1 DE-627 ger DE-627 rakwb eng 530 510 000 530 DE-600 510 DE-600 000 DE-600 610 VZ 44.91 bkl Xiao, Tianbai verfasserin aut A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field 2017transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. Gravitational field Elsevier Multi-scale flow Elsevier Non-equilibrium phenomena Elsevier Well-balanced property Elsevier Unified gas-kinetic scheme Elsevier Cai, Qingdong oth Xu, Kun oth Enthalten in Elsevier Miranda, Regina ELSEVIER Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty 2023 Amsterdam (DE-627)ELV010178430 volume:332 year:2017 day:1 month:03 pages:475-491 extent:17 https://doi.org/10.1016/j.jcp.2016.12.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_24 GBV_ILN_90 44.91 Psychiatrie Psychopathologie VZ AR 332 2017 1 0301 475-491 17 045F 530 |
allfields_unstemmed |
10.1016/j.jcp.2016.12.022 doi GBV00000000000100A.pica (DE-627)ELV030793580 (ELSEVIER)S0021-9991(16)30675-1 DE-627 ger DE-627 rakwb eng 530 510 000 530 DE-600 510 DE-600 000 DE-600 610 VZ 44.91 bkl Xiao, Tianbai verfasserin aut A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field 2017transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. Gravitational field Elsevier Multi-scale flow Elsevier Non-equilibrium phenomena Elsevier Well-balanced property Elsevier Unified gas-kinetic scheme Elsevier Cai, Qingdong oth Xu, Kun oth Enthalten in Elsevier Miranda, Regina ELSEVIER Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty 2023 Amsterdam (DE-627)ELV010178430 volume:332 year:2017 day:1 month:03 pages:475-491 extent:17 https://doi.org/10.1016/j.jcp.2016.12.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_24 GBV_ILN_90 44.91 Psychiatrie Psychopathologie VZ AR 332 2017 1 0301 475-491 17 045F 530 |
allfieldsGer |
10.1016/j.jcp.2016.12.022 doi GBV00000000000100A.pica (DE-627)ELV030793580 (ELSEVIER)S0021-9991(16)30675-1 DE-627 ger DE-627 rakwb eng 530 510 000 530 DE-600 510 DE-600 000 DE-600 610 VZ 44.91 bkl Xiao, Tianbai verfasserin aut A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field 2017transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. Gravitational field Elsevier Multi-scale flow Elsevier Non-equilibrium phenomena Elsevier Well-balanced property Elsevier Unified gas-kinetic scheme Elsevier Cai, Qingdong oth Xu, Kun oth Enthalten in Elsevier Miranda, Regina ELSEVIER Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty 2023 Amsterdam (DE-627)ELV010178430 volume:332 year:2017 day:1 month:03 pages:475-491 extent:17 https://doi.org/10.1016/j.jcp.2016.12.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_24 GBV_ILN_90 44.91 Psychiatrie Psychopathologie VZ AR 332 2017 1 0301 475-491 17 045F 530 |
allfieldsSound |
10.1016/j.jcp.2016.12.022 doi GBV00000000000100A.pica (DE-627)ELV030793580 (ELSEVIER)S0021-9991(16)30675-1 DE-627 ger DE-627 rakwb eng 530 510 000 530 DE-600 510 DE-600 000 DE-600 610 VZ 44.91 bkl Xiao, Tianbai verfasserin aut A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field 2017transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. Gravitational field Elsevier Multi-scale flow Elsevier Non-equilibrium phenomena Elsevier Well-balanced property Elsevier Unified gas-kinetic scheme Elsevier Cai, Qingdong oth Xu, Kun oth Enthalten in Elsevier Miranda, Regina ELSEVIER Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty 2023 Amsterdam (DE-627)ELV010178430 volume:332 year:2017 day:1 month:03 pages:475-491 extent:17 https://doi.org/10.1016/j.jcp.2016.12.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_24 GBV_ILN_90 44.91 Psychiatrie Psychopathologie VZ AR 332 2017 1 0301 475-491 17 045F 530 |
language |
English |
source |
Enthalten in Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty Amsterdam volume:332 year:2017 day:1 month:03 pages:475-491 extent:17 |
sourceStr |
Enthalten in Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty Amsterdam volume:332 year:2017 day:1 month:03 pages:475-491 extent:17 |
format_phy_str_mv |
Article |
bklname |
Psychiatrie Psychopathologie |
institution |
findex.gbv.de |
topic_facet |
Gravitational field Multi-scale flow Non-equilibrium phenomena Well-balanced property Unified gas-kinetic scheme |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty |
authorswithroles_txt_mv |
Xiao, Tianbai @@aut@@ Cai, Qingdong @@oth@@ Xu, Kun @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV010178430 |
dewey-sort |
3530 |
id |
ELV030793580 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV030793580</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625182748.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcp.2016.12.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000100A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV030793580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9991(16)30675-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.91</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiao, Tianbai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gravitational field</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-scale flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Non-equilibrium phenomena</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Well-balanced property</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Unified gas-kinetic scheme</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Qingdong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Kun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Miranda, Regina ELSEVIER</subfield><subfield code="t">Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV010178430</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:332</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:475-491</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcp.2016.12.022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.91</subfield><subfield code="j">Psychiatrie</subfield><subfield code="j">Psychopathologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">332</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">475-491</subfield><subfield code="g">17</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Xiao, Tianbai |
spellingShingle |
Xiao, Tianbai ddc 530 ddc 510 ddc 000 ddc 610 bkl 44.91 Elsevier Gravitational field Elsevier Multi-scale flow Elsevier Non-equilibrium phenomena Elsevier Well-balanced property Elsevier Unified gas-kinetic scheme A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field |
authorStr |
Xiao, Tianbai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV010178430 |
format |
electronic Article |
dewey-ones |
530 - Physics 510 - Mathematics 000 - Computer science, information & general works 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 510 000 530 DE-600 510 DE-600 000 DE-600 610 VZ 44.91 bkl A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field Gravitational field Elsevier Multi-scale flow Elsevier Non-equilibrium phenomena Elsevier Well-balanced property Elsevier Unified gas-kinetic scheme Elsevier |
topic |
ddc 530 ddc 510 ddc 000 ddc 610 bkl 44.91 Elsevier Gravitational field Elsevier Multi-scale flow Elsevier Non-equilibrium phenomena Elsevier Well-balanced property Elsevier Unified gas-kinetic scheme |
topic_unstemmed |
ddc 530 ddc 510 ddc 000 ddc 610 bkl 44.91 Elsevier Gravitational field Elsevier Multi-scale flow Elsevier Non-equilibrium phenomena Elsevier Well-balanced property Elsevier Unified gas-kinetic scheme |
topic_browse |
ddc 530 ddc 510 ddc 000 ddc 610 bkl 44.91 Elsevier Gravitational field Elsevier Multi-scale flow Elsevier Non-equilibrium phenomena Elsevier Well-balanced property Elsevier Unified gas-kinetic scheme |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
q c qc k x kx |
hierarchy_parent_title |
Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty |
hierarchy_parent_id |
ELV010178430 |
dewey-tens |
530 - Physics 510 - Mathematics 000 - Computer science, knowledge & systems 610 - Medicine & health |
hierarchy_top_title |
Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV010178430 |
title |
A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field |
ctrlnum |
(DE-627)ELV030793580 (ELSEVIER)S0021-9991(16)30675-1 |
title_full |
A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field |
author_sort |
Xiao, Tianbai |
journal |
Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty |
journalStr |
Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
475 |
author_browse |
Xiao, Tianbai |
container_volume |
332 |
physical |
17 |
class |
530 510 000 530 DE-600 510 DE-600 000 DE-600 610 VZ 44.91 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xiao, Tianbai |
doi_str_mv |
10.1016/j.jcp.2016.12.022 |
dewey-full |
530 510 000 610 |
title_sort |
a well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field |
title_auth |
A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field |
abstract |
The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. |
abstractGer |
The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. |
abstract_unstemmed |
The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_24 GBV_ILN_90 |
title_short |
A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field |
url |
https://doi.org/10.1016/j.jcp.2016.12.022 |
remote_bool |
true |
author2 |
Cai, Qingdong Xu, Kun |
author2Str |
Cai, Qingdong Xu, Kun |
ppnlink |
ELV010178430 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.jcp.2016.12.022 |
up_date |
2024-07-06T18:31:03.337Z |
_version_ |
1803855502601355265 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV030793580</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625182748.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcp.2016.12.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000100A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV030793580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9991(16)30675-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.91</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiao, Tianbai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The gas dynamics under gravitational field is usually associated with multiple scale nature due to large density variation and a wide variation of local Knudsen number. It is challenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to a hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, the UGKS uses an analytic time-dependent (or scale-dependent) solution in the construction of the discretized fluid dynamic equations in the cell size and time step scales, i.e., the so-called direct modeling method. As a result, with the variation of the ratio between the numerical time step and local particle collision time, the UGKS is able to recover flow physics in different regimes and provides a continuous spectrum of gas dynamics. For the first time, the flow physics of a gravitational system in the transition regime can be studied using the UGKS, and the non-equilibrium phenomena in such a gravitational system can be clearly identified. Many numerical examples will be used to validate the scheme. New physical observation, such as the correlation between the gravitational field and the heat flux in the transition regime, will be presented. The current method provides an indispensable tool for the study of non-equilibrium gravitational system.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gravitational field</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-scale flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Non-equilibrium phenomena</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Well-balanced property</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Unified gas-kinetic scheme</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Qingdong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Kun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Miranda, Regina ELSEVIER</subfield><subfield code="t">Future-oriented repetitive thought, depressive symptoms, and suicide ideation severity: Role of future-event fluency and depressive predictive certainty</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV010178430</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:332</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:475-491</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcp.2016.12.022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.91</subfield><subfield code="j">Psychiatrie</subfield><subfield code="j">Psychopathologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">332</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">475-491</subfield><subfield code="g">17</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.4028025 |