An SMP soft classification algorithm for remote sensing
This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification co...
Ausführliche Beschreibung
Autor*in: |
Phillips, Rhonda D. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Ultrafast acquirement of combined time and frequency spectroscopic data - 2012transfer abstract, an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets : an official journal of the International Association for Mathematical Geology, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:68 ; year:2014 ; pages:73-80 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.cageo.2014.03.010 |
---|
Katalog-ID: |
ELV033640068 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV033640068 | ||
003 | DE-627 | ||
005 | 20230625194602.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cageo.2014.03.010 |2 doi | |
028 | 5 | 2 | |a GBVA2014002000007.pica |
035 | |a (DE-627)ELV033640068 | ||
035 | |a (ELSEVIER)S0098-3004(14)00060-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 550 |a 004 | |
082 | 0 | 4 | |a 550 |q DE-600 |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 580 |q VZ |
084 | |a AFRIKA |q DE-30 |2 fid | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.38 |2 bkl | ||
100 | 1 | |a Phillips, Rhonda D. |e verfasserin |4 aut | |
245 | 1 | 0 | |a An SMP soft classification algorithm for remote sensing |
264 | 1 | |c 2014transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. | ||
520 | |a This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. | ||
650 | 7 | |a Semisupervised clustering |2 Elsevier | |
650 | 7 | |a IGSCR |2 Elsevier | |
650 | 7 | |a Classification |2 Elsevier | |
650 | 7 | |a Remote sensing |2 Elsevier | |
700 | 1 | |a Watson, Layne T. |4 oth | |
700 | 1 | |a Easterling, David R. |4 oth | |
700 | 1 | |a Wynne, Randolph H. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |t Ultrafast acquirement of combined time and frequency spectroscopic data |d 2012transfer abstract |d an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets : an official journal of the International Association for Mathematical Geology |g Amsterdam [u.a.] |w (DE-627)ELV021566380 |
773 | 1 | 8 | |g volume:68 |g year:2014 |g pages:73-80 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.cageo.2014.03.010 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-AFRIKA | ||
912 | |a FID-BIODIV | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_130 | ||
936 | b | k | |a 42.38 |j Botanik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 68 |j 2014 |h 73-80 |g 8 | ||
953 | |2 045F |a 550 |
author_variant |
r d p rd rdp |
---|---|
matchkey_str |
phillipsrhondadwatsonlayneteasterlingdav:2014----:nmsfcasfctoagrtmor |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
42.38 |
publishDate |
2014 |
allfields |
10.1016/j.cageo.2014.03.010 doi GBVA2014002000007.pica (DE-627)ELV033640068 (ELSEVIER)S0098-3004(14)00060-0 DE-627 ger DE-627 rakwb eng 550 004 550 DE-600 004 DE-600 530 VZ 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Phillips, Rhonda D. verfasserin aut An SMP soft classification algorithm for remote sensing 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. Semisupervised clustering Elsevier IGSCR Elsevier Classification Elsevier Remote sensing Elsevier Watson, Layne T. oth Easterling, David R. oth Wynne, Randolph H. oth Enthalten in Elsevier Science Ultrafast acquirement of combined time and frequency spectroscopic data 2012transfer abstract an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets : an official journal of the International Association for Mathematical Geology Amsterdam [u.a.] (DE-627)ELV021566380 volume:68 year:2014 pages:73-80 extent:8 https://doi.org/10.1016/j.cageo.2014.03.010 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_130 42.38 Botanik: Allgemeines VZ AR 68 2014 73-80 8 045F 550 |
spelling |
10.1016/j.cageo.2014.03.010 doi GBVA2014002000007.pica (DE-627)ELV033640068 (ELSEVIER)S0098-3004(14)00060-0 DE-627 ger DE-627 rakwb eng 550 004 550 DE-600 004 DE-600 530 VZ 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Phillips, Rhonda D. verfasserin aut An SMP soft classification algorithm for remote sensing 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. Semisupervised clustering Elsevier IGSCR Elsevier Classification Elsevier Remote sensing Elsevier Watson, Layne T. oth Easterling, David R. oth Wynne, Randolph H. oth Enthalten in Elsevier Science Ultrafast acquirement of combined time and frequency spectroscopic data 2012transfer abstract an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets : an official journal of the International Association for Mathematical Geology Amsterdam [u.a.] (DE-627)ELV021566380 volume:68 year:2014 pages:73-80 extent:8 https://doi.org/10.1016/j.cageo.2014.03.010 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_130 42.38 Botanik: Allgemeines VZ AR 68 2014 73-80 8 045F 550 |
allfields_unstemmed |
10.1016/j.cageo.2014.03.010 doi GBVA2014002000007.pica (DE-627)ELV033640068 (ELSEVIER)S0098-3004(14)00060-0 DE-627 ger DE-627 rakwb eng 550 004 550 DE-600 004 DE-600 530 VZ 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Phillips, Rhonda D. verfasserin aut An SMP soft classification algorithm for remote sensing 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. Semisupervised clustering Elsevier IGSCR Elsevier Classification Elsevier Remote sensing Elsevier Watson, Layne T. oth Easterling, David R. oth Wynne, Randolph H. oth Enthalten in Elsevier Science Ultrafast acquirement of combined time and frequency spectroscopic data 2012transfer abstract an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets : an official journal of the International Association for Mathematical Geology Amsterdam [u.a.] (DE-627)ELV021566380 volume:68 year:2014 pages:73-80 extent:8 https://doi.org/10.1016/j.cageo.2014.03.010 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_130 42.38 Botanik: Allgemeines VZ AR 68 2014 73-80 8 045F 550 |
allfieldsGer |
10.1016/j.cageo.2014.03.010 doi GBVA2014002000007.pica (DE-627)ELV033640068 (ELSEVIER)S0098-3004(14)00060-0 DE-627 ger DE-627 rakwb eng 550 004 550 DE-600 004 DE-600 530 VZ 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Phillips, Rhonda D. verfasserin aut An SMP soft classification algorithm for remote sensing 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. Semisupervised clustering Elsevier IGSCR Elsevier Classification Elsevier Remote sensing Elsevier Watson, Layne T. oth Easterling, David R. oth Wynne, Randolph H. oth Enthalten in Elsevier Science Ultrafast acquirement of combined time and frequency spectroscopic data 2012transfer abstract an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets : an official journal of the International Association for Mathematical Geology Amsterdam [u.a.] (DE-627)ELV021566380 volume:68 year:2014 pages:73-80 extent:8 https://doi.org/10.1016/j.cageo.2014.03.010 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_130 42.38 Botanik: Allgemeines VZ AR 68 2014 73-80 8 045F 550 |
allfieldsSound |
10.1016/j.cageo.2014.03.010 doi GBVA2014002000007.pica (DE-627)ELV033640068 (ELSEVIER)S0098-3004(14)00060-0 DE-627 ger DE-627 rakwb eng 550 004 550 DE-600 004 DE-600 530 VZ 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Phillips, Rhonda D. verfasserin aut An SMP soft classification algorithm for remote sensing 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. Semisupervised clustering Elsevier IGSCR Elsevier Classification Elsevier Remote sensing Elsevier Watson, Layne T. oth Easterling, David R. oth Wynne, Randolph H. oth Enthalten in Elsevier Science Ultrafast acquirement of combined time and frequency spectroscopic data 2012transfer abstract an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets : an official journal of the International Association for Mathematical Geology Amsterdam [u.a.] (DE-627)ELV021566380 volume:68 year:2014 pages:73-80 extent:8 https://doi.org/10.1016/j.cageo.2014.03.010 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_130 42.38 Botanik: Allgemeines VZ AR 68 2014 73-80 8 045F 550 |
language |
English |
source |
Enthalten in Ultrafast acquirement of combined time and frequency spectroscopic data Amsterdam [u.a.] volume:68 year:2014 pages:73-80 extent:8 |
sourceStr |
Enthalten in Ultrafast acquirement of combined time and frequency spectroscopic data Amsterdam [u.a.] volume:68 year:2014 pages:73-80 extent:8 |
format_phy_str_mv |
Article |
bklname |
Botanik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Semisupervised clustering IGSCR Classification Remote sensing |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Ultrafast acquirement of combined time and frequency spectroscopic data |
authorswithroles_txt_mv |
Phillips, Rhonda D. @@aut@@ Watson, Layne T. @@oth@@ Easterling, David R. @@oth@@ Wynne, Randolph H. @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV021566380 |
dewey-sort |
3550 |
id |
ELV033640068 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033640068</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625194602.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cageo.2014.03.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014002000007.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033640068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0098-3004(14)00060-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AFRIKA</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Phillips, Rhonda D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An SMP soft classification algorithm for remote sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semisupervised clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IGSCR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Classification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Remote sensing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Watson, Layne T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Easterling, David R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wynne, Randolph H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="t">Ultrafast acquirement of combined time and frequency spectroscopic data</subfield><subfield code="d">2012transfer abstract</subfield><subfield code="d">an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets : an official journal of the International Association for Mathematical Geology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV021566380</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:68</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:73-80</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cageo.2014.03.010</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-AFRIKA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.38</subfield><subfield code="j">Botanik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">68</subfield><subfield code="j">2014</subfield><subfield code="h">73-80</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">550</subfield></datafield></record></collection>
|
author |
Phillips, Rhonda D. |
spellingShingle |
Phillips, Rhonda D. ddc 550 ddc 004 ddc 530 ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Semisupervised clustering Elsevier IGSCR Elsevier Classification Elsevier Remote sensing An SMP soft classification algorithm for remote sensing |
authorStr |
Phillips, Rhonda D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV021566380 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 004 - Data processing & computer science 530 - Physics 580 - Plants (Botany) |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
550 004 550 DE-600 004 DE-600 530 VZ 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl An SMP soft classification algorithm for remote sensing Semisupervised clustering Elsevier IGSCR Elsevier Classification Elsevier Remote sensing Elsevier |
topic |
ddc 550 ddc 004 ddc 530 ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Semisupervised clustering Elsevier IGSCR Elsevier Classification Elsevier Remote sensing |
topic_unstemmed |
ddc 550 ddc 004 ddc 530 ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Semisupervised clustering Elsevier IGSCR Elsevier Classification Elsevier Remote sensing |
topic_browse |
ddc 550 ddc 004 ddc 530 ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Semisupervised clustering Elsevier IGSCR Elsevier Classification Elsevier Remote sensing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l t w lt ltw d r e dr dre r h w rh rhw |
hierarchy_parent_title |
Ultrafast acquirement of combined time and frequency spectroscopic data |
hierarchy_parent_id |
ELV021566380 |
dewey-tens |
550 - Earth sciences & geology 000 - Computer science, knowledge & systems 530 - Physics 580 - Plants (Botany) |
hierarchy_top_title |
Ultrafast acquirement of combined time and frequency spectroscopic data |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV021566380 |
title |
An SMP soft classification algorithm for remote sensing |
ctrlnum |
(DE-627)ELV033640068 (ELSEVIER)S0098-3004(14)00060-0 |
title_full |
An SMP soft classification algorithm for remote sensing |
author_sort |
Phillips, Rhonda D. |
journal |
Ultrafast acquirement of combined time and frequency spectroscopic data |
journalStr |
Ultrafast acquirement of combined time and frequency spectroscopic data |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
73 |
author_browse |
Phillips, Rhonda D. |
container_volume |
68 |
physical |
8 |
class |
550 004 550 DE-600 004 DE-600 530 VZ 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Phillips, Rhonda D. |
doi_str_mv |
10.1016/j.cageo.2014.03.010 |
dewey-full |
550 004 530 580 |
title_sort |
an smp soft classification algorithm for remote sensing |
title_auth |
An SMP soft classification algorithm for remote sensing |
abstract |
This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. |
abstractGer |
This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. |
abstract_unstemmed |
This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_130 |
title_short |
An SMP soft classification algorithm for remote sensing |
url |
https://doi.org/10.1016/j.cageo.2014.03.010 |
remote_bool |
true |
author2 |
Watson, Layne T. Easterling, David R. Wynne, Randolph H. |
author2Str |
Watson, Layne T. Easterling, David R. Wynne, Randolph H. |
ppnlink |
ELV021566380 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.cageo.2014.03.010 |
up_date |
2024-07-06T19:04:51.985Z |
_version_ |
1803857629790863360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033640068</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625194602.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cageo.2014.03.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014002000007.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033640068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0098-3004(14)00060-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AFRIKA</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Phillips, Rhonda D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An SMP soft classification algorithm for remote sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over 4min using 32 processors.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semisupervised clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IGSCR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Classification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Remote sensing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Watson, Layne T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Easterling, David R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wynne, Randolph H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="t">Ultrafast acquirement of combined time and frequency spectroscopic data</subfield><subfield code="d">2012transfer abstract</subfield><subfield code="d">an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets : an official journal of the International Association for Mathematical Geology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV021566380</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:68</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:73-80</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cageo.2014.03.010</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-AFRIKA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.38</subfield><subfield code="j">Botanik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">68</subfield><subfield code="j">2014</subfield><subfield code="h">73-80</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">550</subfield></datafield></record></collection>
|
score |
7.400943 |