Collimation testing and calibration using a heterodyne Moiré method
This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares...
Ausführliche Beschreibung
Autor*in: |
Chang, Wei-Yao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel - Pratap Singh, Ajeet ELSEVIER, 2020, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2014 ; pages:126-131 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.optlaseng.2014.06.001 |
---|
Katalog-ID: |
ELV033676704 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV033676704 | ||
003 | DE-627 | ||
005 | 20230625194704.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.optlaseng.2014.06.001 |2 doi | |
028 | 5 | 2 | |a GBVA2014003000023.pica |
035 | |a (DE-627)ELV033676704 | ||
035 | |a (ELSEVIER)S0143-8166(14)00145-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.70 |2 bkl | ||
084 | |a 83.65 |2 bkl | ||
084 | |a 52.57 |2 bkl | ||
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Chang, Wei-Yao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Collimation testing and calibration using a heterodyne Moiré method |
264 | 1 | |c 2014transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. | ||
520 | |a This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. | ||
650 | 7 | |a Talbot effect |2 Elsevier | |
650 | 7 | |a Collimation testing |2 Elsevier | |
650 | 7 | |a Moiré interferometry |2 Elsevier | |
650 | 7 | |a Heterodyne interferometry |2 Elsevier | |
700 | 1 | |a Hsu, Ken Y. |4 oth | |
700 | 1 | |a Chen, Kun-Huang |4 oth | |
700 | 1 | |a Chen, Jing-Heng |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Pratap Singh, Ajeet ELSEVIER |t Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |d 2020 |g Amsterdam [u.a.] |w (DE-627)ELV004269535 |
773 | 1 | 8 | |g volume:62 |g year:2014 |g pages:126-131 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.optlaseng.2014.06.001 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |q VZ |
936 | b | k | |a 83.65 |j Versorgungswirtschaft |q VZ |
936 | b | k | |a 52.57 |j Energiespeicherung |q VZ |
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 62 |j 2014 |h 126-131 |g 6 | ||
953 | |2 045F |a 530 |
author_variant |
w y c wyc |
---|---|
matchkey_str |
changweiyaohsukenychenkunhuangchenjinghe:2014----:olmtotsignclbainsnaee |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
50.70 83.65 52.57 52.56 |
publishDate |
2014 |
allfields |
10.1016/j.optlaseng.2014.06.001 doi GBVA2014003000023.pica (DE-627)ELV033676704 (ELSEVIER)S0143-8166(14)00145-6 DE-627 ger DE-627 rakwb eng 530 530 DE-600 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Chang, Wei-Yao verfasserin aut Collimation testing and calibration using a heterodyne Moiré method 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. Talbot effect Elsevier Collimation testing Elsevier Moiré interferometry Elsevier Heterodyne interferometry Elsevier Hsu, Ken Y. oth Chen, Kun-Huang oth Chen, Jing-Heng oth Enthalten in Elsevier Science Pratap Singh, Ajeet ELSEVIER Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel 2020 Amsterdam [u.a.] (DE-627)ELV004269535 volume:62 year:2014 pages:126-131 extent:6 https://doi.org/10.1016/j.optlaseng.2014.06.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 62 2014 126-131 6 045F 530 |
spelling |
10.1016/j.optlaseng.2014.06.001 doi GBVA2014003000023.pica (DE-627)ELV033676704 (ELSEVIER)S0143-8166(14)00145-6 DE-627 ger DE-627 rakwb eng 530 530 DE-600 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Chang, Wei-Yao verfasserin aut Collimation testing and calibration using a heterodyne Moiré method 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. Talbot effect Elsevier Collimation testing Elsevier Moiré interferometry Elsevier Heterodyne interferometry Elsevier Hsu, Ken Y. oth Chen, Kun-Huang oth Chen, Jing-Heng oth Enthalten in Elsevier Science Pratap Singh, Ajeet ELSEVIER Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel 2020 Amsterdam [u.a.] (DE-627)ELV004269535 volume:62 year:2014 pages:126-131 extent:6 https://doi.org/10.1016/j.optlaseng.2014.06.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 62 2014 126-131 6 045F 530 |
allfields_unstemmed |
10.1016/j.optlaseng.2014.06.001 doi GBVA2014003000023.pica (DE-627)ELV033676704 (ELSEVIER)S0143-8166(14)00145-6 DE-627 ger DE-627 rakwb eng 530 530 DE-600 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Chang, Wei-Yao verfasserin aut Collimation testing and calibration using a heterodyne Moiré method 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. Talbot effect Elsevier Collimation testing Elsevier Moiré interferometry Elsevier Heterodyne interferometry Elsevier Hsu, Ken Y. oth Chen, Kun-Huang oth Chen, Jing-Heng oth Enthalten in Elsevier Science Pratap Singh, Ajeet ELSEVIER Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel 2020 Amsterdam [u.a.] (DE-627)ELV004269535 volume:62 year:2014 pages:126-131 extent:6 https://doi.org/10.1016/j.optlaseng.2014.06.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 62 2014 126-131 6 045F 530 |
allfieldsGer |
10.1016/j.optlaseng.2014.06.001 doi GBVA2014003000023.pica (DE-627)ELV033676704 (ELSEVIER)S0143-8166(14)00145-6 DE-627 ger DE-627 rakwb eng 530 530 DE-600 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Chang, Wei-Yao verfasserin aut Collimation testing and calibration using a heterodyne Moiré method 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. Talbot effect Elsevier Collimation testing Elsevier Moiré interferometry Elsevier Heterodyne interferometry Elsevier Hsu, Ken Y. oth Chen, Kun-Huang oth Chen, Jing-Heng oth Enthalten in Elsevier Science Pratap Singh, Ajeet ELSEVIER Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel 2020 Amsterdam [u.a.] (DE-627)ELV004269535 volume:62 year:2014 pages:126-131 extent:6 https://doi.org/10.1016/j.optlaseng.2014.06.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 62 2014 126-131 6 045F 530 |
allfieldsSound |
10.1016/j.optlaseng.2014.06.001 doi GBVA2014003000023.pica (DE-627)ELV033676704 (ELSEVIER)S0143-8166(14)00145-6 DE-627 ger DE-627 rakwb eng 530 530 DE-600 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Chang, Wei-Yao verfasserin aut Collimation testing and calibration using a heterodyne Moiré method 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. Talbot effect Elsevier Collimation testing Elsevier Moiré interferometry Elsevier Heterodyne interferometry Elsevier Hsu, Ken Y. oth Chen, Kun-Huang oth Chen, Jing-Heng oth Enthalten in Elsevier Science Pratap Singh, Ajeet ELSEVIER Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel 2020 Amsterdam [u.a.] (DE-627)ELV004269535 volume:62 year:2014 pages:126-131 extent:6 https://doi.org/10.1016/j.optlaseng.2014.06.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 62 2014 126-131 6 045F 530 |
language |
English |
source |
Enthalten in Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel Amsterdam [u.a.] volume:62 year:2014 pages:126-131 extent:6 |
sourceStr |
Enthalten in Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel Amsterdam [u.a.] volume:62 year:2014 pages:126-131 extent:6 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines Versorgungswirtschaft Energiespeicherung Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Talbot effect Collimation testing Moiré interferometry Heterodyne interferometry |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |
authorswithroles_txt_mv |
Chang, Wei-Yao @@aut@@ Hsu, Ken Y. @@oth@@ Chen, Kun-Huang @@oth@@ Chen, Jing-Heng @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV004269535 |
dewey-sort |
3530 |
id |
ELV033676704 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033676704</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625194704.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optlaseng.2014.06.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014003000023.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033676704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-8166(14)00145-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Wei-Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Collimation testing and calibration using a heterodyne Moiré method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Talbot effect</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Collimation testing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Moiré interferometry</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heterodyne interferometry</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hsu, Ken Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Kun-Huang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jing-Heng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Pratap Singh, Ajeet ELSEVIER</subfield><subfield code="t">Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004269535</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:126-131</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.optlaseng.2014.06.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.65</subfield><subfield code="j">Versorgungswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2014</subfield><subfield code="h">126-131</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Chang, Wei-Yao |
spellingShingle |
Chang, Wei-Yao ddc 530 ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 Elsevier Talbot effect Elsevier Collimation testing Elsevier Moiré interferometry Elsevier Heterodyne interferometry Collimation testing and calibration using a heterodyne Moiré method |
authorStr |
Chang, Wei-Yao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV004269535 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Collimation testing and calibration using a heterodyne Moiré method Talbot effect Elsevier Collimation testing Elsevier Moiré interferometry Elsevier Heterodyne interferometry Elsevier |
topic |
ddc 530 ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 Elsevier Talbot effect Elsevier Collimation testing Elsevier Moiré interferometry Elsevier Heterodyne interferometry |
topic_unstemmed |
ddc 530 ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 Elsevier Talbot effect Elsevier Collimation testing Elsevier Moiré interferometry Elsevier Heterodyne interferometry |
topic_browse |
ddc 530 ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 Elsevier Talbot effect Elsevier Collimation testing Elsevier Moiré interferometry Elsevier Heterodyne interferometry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
k y h ky kyh k h c khc j h c jhc |
hierarchy_parent_title |
Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |
hierarchy_parent_id |
ELV004269535 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV004269535 |
title |
Collimation testing and calibration using a heterodyne Moiré method |
ctrlnum |
(DE-627)ELV033676704 (ELSEVIER)S0143-8166(14)00145-6 |
title_full |
Collimation testing and calibration using a heterodyne Moiré method |
author_sort |
Chang, Wei-Yao |
journal |
Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |
journalStr |
Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
126 |
author_browse |
Chang, Wei-Yao |
container_volume |
62 |
physical |
6 |
class |
530 530 DE-600 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chang, Wei-Yao |
doi_str_mv |
10.1016/j.optlaseng.2014.06.001 |
dewey-full |
530 620 |
title_sort |
collimation testing and calibration using a heterodyne moiré method |
title_auth |
Collimation testing and calibration using a heterodyne Moiré method |
abstract |
This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. |
abstractGer |
This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. |
abstract_unstemmed |
This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Collimation testing and calibration using a heterodyne Moiré method |
url |
https://doi.org/10.1016/j.optlaseng.2014.06.001 |
remote_bool |
true |
author2 |
Hsu, Ken Y. Chen, Kun-Huang Chen, Jing-Heng |
author2Str |
Hsu, Ken Y. Chen, Kun-Huang Chen, Jing-Heng |
ppnlink |
ELV004269535 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.optlaseng.2014.06.001 |
up_date |
2024-07-06T19:10:34.212Z |
_version_ |
1803857988642930688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033676704</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625194704.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optlaseng.2014.06.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014003000023.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033676704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-8166(14)00145-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Wei-Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Collimation testing and calibration using a heterodyne Moiré method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study proposes a simple, rapid, and highly accurate method to achieve the collimation testing and calibration of laser light beams. By applying a relative constant velocity to two gratings, every pixel of a CMOS camera can receive a series of heterodyne moiré signals. Based on the least squares sine fitting algorithm, the phase of the optimized sinusoidal wave can be obtained. Consequently, the phase slope along the direction perpendicular to the grating lines can be estimated and then used to judge the degree of collimation. Furthermore, by measuring only two phase slopes at two positions of the collimating lens, the calibration of the light beam collimation can also be achieved. The experiment validated the proposed method, and the positioning error of the light beam collimation was approximately 7μm.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Talbot effect</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Collimation testing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Moiré interferometry</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heterodyne interferometry</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hsu, Ken Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Kun-Huang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jing-Heng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Pratap Singh, Ajeet ELSEVIER</subfield><subfield code="t">Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004269535</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:126-131</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.optlaseng.2014.06.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.65</subfield><subfield code="j">Versorgungswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2014</subfield><subfield code="h">126-131</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.4022093 |