Unmet needs in the treatment of autoimmunity: From aspirin to stem cells
As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These n...
Ausführliche Beschreibung
Autor*in: |
Chang, Christopher [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Umfang: |
16 |
---|
Übergeordnetes Werk: |
Enthalten in: Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle - 2011transfer abstract, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2014 ; number:4 ; pages:331-346 ; extent:16 |
Links: |
---|
DOI / URN: |
10.1016/j.autrev.2014.01.052 |
---|
Katalog-ID: |
ELV033775982 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV033775982 | ||
003 | DE-627 | ||
005 | 20230625195004.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.autrev.2014.01.052 |2 doi | |
028 | 5 | 2 | |a GBVA2014007000002.pica |
035 | |a (DE-627)ELV033775982 | ||
035 | |a (ELSEVIER)S1568-9972(14)00064-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 610 | |
082 | 0 | 4 | |a 610 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.13 |2 bkl | ||
100 | 1 | |a Chang, Christopher |e verfasserin |4 aut | |
245 | 1 | 0 | |a Unmet needs in the treatment of autoimmunity: From aspirin to stem cells |
264 | 1 | |c 2014transfer abstract | |
300 | |a 16 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. | ||
520 | |a As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. | ||
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |t Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle |d 2011transfer abstract |g Amsterdam [u.a.] |w (DE-627)ELV020724853 |
773 | 1 | 8 | |g volume:13 |g year:2014 |g number:4 |g pages:331-346 |g extent:16 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.autrev.2014.01.052 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 42.13 |j Molekularbiologie |q VZ |
951 | |a AR | ||
952 | |d 13 |j 2014 |e 4 |h 331-346 |g 16 | ||
953 | |2 045F |a 610 |
author_variant |
c c cc |
---|---|
matchkey_str |
changchristopher:2014----:nenesnhtetetfuomuiyrms |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
42.13 |
publishDate |
2014 |
allfields |
10.1016/j.autrev.2014.01.052 doi GBVA2014007000002.pica (DE-627)ELV033775982 (ELSEVIER)S1568-9972(14)00064-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 540 VZ 660 VZ 540 VZ BIODIV DE-30 fid 42.13 bkl Chang, Christopher verfasserin aut Unmet needs in the treatment of autoimmunity: From aspirin to stem cells 2014transfer abstract 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. Enthalten in Elsevier Science Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle 2011transfer abstract Amsterdam [u.a.] (DE-627)ELV020724853 volume:13 year:2014 number:4 pages:331-346 extent:16 https://doi.org/10.1016/j.autrev.2014.01.052 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 13 2014 4 331-346 16 045F 610 |
spelling |
10.1016/j.autrev.2014.01.052 doi GBVA2014007000002.pica (DE-627)ELV033775982 (ELSEVIER)S1568-9972(14)00064-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 540 VZ 660 VZ 540 VZ BIODIV DE-30 fid 42.13 bkl Chang, Christopher verfasserin aut Unmet needs in the treatment of autoimmunity: From aspirin to stem cells 2014transfer abstract 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. Enthalten in Elsevier Science Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle 2011transfer abstract Amsterdam [u.a.] (DE-627)ELV020724853 volume:13 year:2014 number:4 pages:331-346 extent:16 https://doi.org/10.1016/j.autrev.2014.01.052 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 13 2014 4 331-346 16 045F 610 |
allfields_unstemmed |
10.1016/j.autrev.2014.01.052 doi GBVA2014007000002.pica (DE-627)ELV033775982 (ELSEVIER)S1568-9972(14)00064-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 540 VZ 660 VZ 540 VZ BIODIV DE-30 fid 42.13 bkl Chang, Christopher verfasserin aut Unmet needs in the treatment of autoimmunity: From aspirin to stem cells 2014transfer abstract 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. Enthalten in Elsevier Science Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle 2011transfer abstract Amsterdam [u.a.] (DE-627)ELV020724853 volume:13 year:2014 number:4 pages:331-346 extent:16 https://doi.org/10.1016/j.autrev.2014.01.052 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 13 2014 4 331-346 16 045F 610 |
allfieldsGer |
10.1016/j.autrev.2014.01.052 doi GBVA2014007000002.pica (DE-627)ELV033775982 (ELSEVIER)S1568-9972(14)00064-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 540 VZ 660 VZ 540 VZ BIODIV DE-30 fid 42.13 bkl Chang, Christopher verfasserin aut Unmet needs in the treatment of autoimmunity: From aspirin to stem cells 2014transfer abstract 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. Enthalten in Elsevier Science Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle 2011transfer abstract Amsterdam [u.a.] (DE-627)ELV020724853 volume:13 year:2014 number:4 pages:331-346 extent:16 https://doi.org/10.1016/j.autrev.2014.01.052 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 13 2014 4 331-346 16 045F 610 |
allfieldsSound |
10.1016/j.autrev.2014.01.052 doi GBVA2014007000002.pica (DE-627)ELV033775982 (ELSEVIER)S1568-9972(14)00064-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 540 VZ 660 VZ 540 VZ BIODIV DE-30 fid 42.13 bkl Chang, Christopher verfasserin aut Unmet needs in the treatment of autoimmunity: From aspirin to stem cells 2014transfer abstract 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. Enthalten in Elsevier Science Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle 2011transfer abstract Amsterdam [u.a.] (DE-627)ELV020724853 volume:13 year:2014 number:4 pages:331-346 extent:16 https://doi.org/10.1016/j.autrev.2014.01.052 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 13 2014 4 331-346 16 045F 610 |
language |
English |
source |
Enthalten in Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle Amsterdam [u.a.] volume:13 year:2014 number:4 pages:331-346 extent:16 |
sourceStr |
Enthalten in Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle Amsterdam [u.a.] volume:13 year:2014 number:4 pages:331-346 extent:16 |
format_phy_str_mv |
Article |
bklname |
Molekularbiologie |
institution |
findex.gbv.de |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle |
authorswithroles_txt_mv |
Chang, Christopher @@aut@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV020724853 |
dewey-sort |
3610 |
id |
ELV033775982 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033775982</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625195004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.autrev.2014.01.052</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014007000002.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033775982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1568-9972(14)00064-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Christopher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unmet needs in the treatment of autoimmunity: From aspirin to stem cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="t">Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle</subfield><subfield code="d">2011transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV020724853</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:331-346</subfield><subfield code="g">extent:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.autrev.2014.01.052</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.13</subfield><subfield code="j">Molekularbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2014</subfield><subfield code="e">4</subfield><subfield code="h">331-346</subfield><subfield code="g">16</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
author |
Chang, Christopher |
spellingShingle |
Chang, Christopher ddc 610 ddc 540 ddc 660 fid BIODIV bkl 42.13 Unmet needs in the treatment of autoimmunity: From aspirin to stem cells |
authorStr |
Chang, Christopher |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV020724853 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 540 - Chemistry & allied sciences 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 610 DE-600 540 VZ 660 VZ BIODIV DE-30 fid 42.13 bkl Unmet needs in the treatment of autoimmunity: From aspirin to stem cells |
topic |
ddc 610 ddc 540 ddc 660 fid BIODIV bkl 42.13 |
topic_unstemmed |
ddc 610 ddc 540 ddc 660 fid BIODIV bkl 42.13 |
topic_browse |
ddc 610 ddc 540 ddc 660 fid BIODIV bkl 42.13 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle |
hierarchy_parent_id |
ELV020724853 |
dewey-tens |
610 - Medicine & health 540 - Chemistry 660 - Chemical engineering |
hierarchy_top_title |
Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV020724853 |
title |
Unmet needs in the treatment of autoimmunity: From aspirin to stem cells |
ctrlnum |
(DE-627)ELV033775982 (ELSEVIER)S1568-9972(14)00064-0 |
title_full |
Unmet needs in the treatment of autoimmunity: From aspirin to stem cells |
author_sort |
Chang, Christopher |
journal |
Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle |
journalStr |
Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
331 |
author_browse |
Chang, Christopher |
container_volume |
13 |
physical |
16 |
class |
610 610 DE-600 540 VZ 660 VZ BIODIV DE-30 fid 42.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chang, Christopher |
doi_str_mv |
10.1016/j.autrev.2014.01.052 |
dewey-full |
610 540 660 |
title_sort |
unmet needs in the treatment of autoimmunity: from aspirin to stem cells |
title_auth |
Unmet needs in the treatment of autoimmunity: From aspirin to stem cells |
abstract |
As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. |
abstractGer |
As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. |
abstract_unstemmed |
As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
container_issue |
4 |
title_short |
Unmet needs in the treatment of autoimmunity: From aspirin to stem cells |
url |
https://doi.org/10.1016/j.autrev.2014.01.052 |
remote_bool |
true |
ppnlink |
ELV020724853 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.autrev.2014.01.052 |
up_date |
2024-07-06T19:26:18.432Z |
_version_ |
1803858978728312832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033775982</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625195004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.autrev.2014.01.052</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014007000002.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033775982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1568-9972(14)00064-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Christopher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unmet needs in the treatment of autoimmunity: From aspirin to stem cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer “steroid sparing” to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene–environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="t">Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle</subfield><subfield code="d">2011transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV020724853</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:331-346</subfield><subfield code="g">extent:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.autrev.2014.01.052</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.13</subfield><subfield code="j">Molekularbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2014</subfield><subfield code="e">4</subfield><subfield code="h">331-346</subfield><subfield code="g">16</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
score |
7.4019556 |