Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature
Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predi...
Ausführliche Beschreibung
Autor*in: |
Zhixiu, Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
4 |
---|
Übergeordnetes Werk: |
Enthalten in: SUSY effects in R b : Revisited under current experimental constraints - Su, Wei ELSEVIER, 2016transfer abstract, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:43 ; year:2014 ; number:6 ; pages:1300-1303 ; extent:4 |
Links: |
---|
DOI / URN: |
10.1016/S1875-5372(14)60111-9 |
---|
Katalog-ID: |
ELV033889619 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV033889619 | ||
003 | DE-627 | ||
005 | 20230625195324.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/S1875-5372(14)60111-9 |2 doi | |
028 | 5 | 2 | |a GBVA2014010000013.pica |
035 | |a (DE-627)ELV033889619 | ||
035 | |a (ELSEVIER)S1875-5372(14)60111-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 670 | |
082 | 0 | 4 | |a 670 |q DE-600 |
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 77.50 |2 bkl | ||
100 | 1 | |a Zhixiu, Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature |
264 | 1 | |c 2014transfer abstract | |
300 | |a 4 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. | ||
520 | |a Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. | ||
650 | 7 | |a Al-14Cu-7Ce alloy |2 Elsevier | |
650 | 7 | |a flow stress |2 Elsevier | |
650 | 7 | |a strain compensation |2 Elsevier | |
700 | 1 | |a Hai, Li |4 oth | |
700 | 1 | |a Wangjie, Sun |4 oth | |
700 | 1 | |a Fenfen, Miao |4 oth | |
700 | 1 | |a Renguo, Song |4 oth | |
700 | 1 | |a Ziqiao, Zheng |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Su, Wei ELSEVIER |t SUSY effects in R b : Revisited under current experimental constraints |d 2016transfer abstract |g Amsterdam [u.a.] |w (DE-627)ELV014078635 |
773 | 1 | 8 | |g volume:43 |g year:2014 |g number:6 |g pages:1300-1303 |g extent:4 |
856 | 4 | 0 | |u https://doi.org/10.1016/S1875-5372(14)60111-9 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 77.50 |j Psychophysiologie |q VZ |
951 | |a AR | ||
952 | |d 43 |j 2014 |e 6 |h 1300-1303 |g 4 | ||
953 | |2 045F |a 670 |
author_variant |
w z wz |
---|---|
matchkey_str |
zhixiuwanghailiwangjiesunfenfenmiaorengu:2014----:oeigopeitnfosrsoa1c7eloae |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
77.50 |
publishDate |
2014 |
allfields |
10.1016/S1875-5372(14)60111-9 doi GBVA2014010000013.pica (DE-627)ELV033889619 (ELSEVIER)S1875-5372(14)60111-9 DE-627 ger DE-627 rakwb eng 670 670 DE-600 530 VZ 610 VZ 77.50 bkl Zhixiu, Wang verfasserin aut Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature 2014transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. Al-14Cu-7Ce alloy Elsevier flow stress Elsevier strain compensation Elsevier Hai, Li oth Wangjie, Sun oth Fenfen, Miao oth Renguo, Song oth Ziqiao, Zheng oth Enthalten in Elsevier Su, Wei ELSEVIER SUSY effects in R b : Revisited under current experimental constraints 2016transfer abstract Amsterdam [u.a.] (DE-627)ELV014078635 volume:43 year:2014 number:6 pages:1300-1303 extent:4 https://doi.org/10.1016/S1875-5372(14)60111-9 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 77.50 Psychophysiologie VZ AR 43 2014 6 1300-1303 4 045F 670 |
spelling |
10.1016/S1875-5372(14)60111-9 doi GBVA2014010000013.pica (DE-627)ELV033889619 (ELSEVIER)S1875-5372(14)60111-9 DE-627 ger DE-627 rakwb eng 670 670 DE-600 530 VZ 610 VZ 77.50 bkl Zhixiu, Wang verfasserin aut Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature 2014transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. Al-14Cu-7Ce alloy Elsevier flow stress Elsevier strain compensation Elsevier Hai, Li oth Wangjie, Sun oth Fenfen, Miao oth Renguo, Song oth Ziqiao, Zheng oth Enthalten in Elsevier Su, Wei ELSEVIER SUSY effects in R b : Revisited under current experimental constraints 2016transfer abstract Amsterdam [u.a.] (DE-627)ELV014078635 volume:43 year:2014 number:6 pages:1300-1303 extent:4 https://doi.org/10.1016/S1875-5372(14)60111-9 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 77.50 Psychophysiologie VZ AR 43 2014 6 1300-1303 4 045F 670 |
allfields_unstemmed |
10.1016/S1875-5372(14)60111-9 doi GBVA2014010000013.pica (DE-627)ELV033889619 (ELSEVIER)S1875-5372(14)60111-9 DE-627 ger DE-627 rakwb eng 670 670 DE-600 530 VZ 610 VZ 77.50 bkl Zhixiu, Wang verfasserin aut Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature 2014transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. Al-14Cu-7Ce alloy Elsevier flow stress Elsevier strain compensation Elsevier Hai, Li oth Wangjie, Sun oth Fenfen, Miao oth Renguo, Song oth Ziqiao, Zheng oth Enthalten in Elsevier Su, Wei ELSEVIER SUSY effects in R b : Revisited under current experimental constraints 2016transfer abstract Amsterdam [u.a.] (DE-627)ELV014078635 volume:43 year:2014 number:6 pages:1300-1303 extent:4 https://doi.org/10.1016/S1875-5372(14)60111-9 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 77.50 Psychophysiologie VZ AR 43 2014 6 1300-1303 4 045F 670 |
allfieldsGer |
10.1016/S1875-5372(14)60111-9 doi GBVA2014010000013.pica (DE-627)ELV033889619 (ELSEVIER)S1875-5372(14)60111-9 DE-627 ger DE-627 rakwb eng 670 670 DE-600 530 VZ 610 VZ 77.50 bkl Zhixiu, Wang verfasserin aut Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature 2014transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. Al-14Cu-7Ce alloy Elsevier flow stress Elsevier strain compensation Elsevier Hai, Li oth Wangjie, Sun oth Fenfen, Miao oth Renguo, Song oth Ziqiao, Zheng oth Enthalten in Elsevier Su, Wei ELSEVIER SUSY effects in R b : Revisited under current experimental constraints 2016transfer abstract Amsterdam [u.a.] (DE-627)ELV014078635 volume:43 year:2014 number:6 pages:1300-1303 extent:4 https://doi.org/10.1016/S1875-5372(14)60111-9 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 77.50 Psychophysiologie VZ AR 43 2014 6 1300-1303 4 045F 670 |
allfieldsSound |
10.1016/S1875-5372(14)60111-9 doi GBVA2014010000013.pica (DE-627)ELV033889619 (ELSEVIER)S1875-5372(14)60111-9 DE-627 ger DE-627 rakwb eng 670 670 DE-600 530 VZ 610 VZ 77.50 bkl Zhixiu, Wang verfasserin aut Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature 2014transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. Al-14Cu-7Ce alloy Elsevier flow stress Elsevier strain compensation Elsevier Hai, Li oth Wangjie, Sun oth Fenfen, Miao oth Renguo, Song oth Ziqiao, Zheng oth Enthalten in Elsevier Su, Wei ELSEVIER SUSY effects in R b : Revisited under current experimental constraints 2016transfer abstract Amsterdam [u.a.] (DE-627)ELV014078635 volume:43 year:2014 number:6 pages:1300-1303 extent:4 https://doi.org/10.1016/S1875-5372(14)60111-9 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 77.50 Psychophysiologie VZ AR 43 2014 6 1300-1303 4 045F 670 |
language |
English |
source |
Enthalten in SUSY effects in R b : Revisited under current experimental constraints Amsterdam [u.a.] volume:43 year:2014 number:6 pages:1300-1303 extent:4 |
sourceStr |
Enthalten in SUSY effects in R b : Revisited under current experimental constraints Amsterdam [u.a.] volume:43 year:2014 number:6 pages:1300-1303 extent:4 |
format_phy_str_mv |
Article |
bklname |
Psychophysiologie |
institution |
findex.gbv.de |
topic_facet |
Al-14Cu-7Ce alloy flow stress strain compensation |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
SUSY effects in R b : Revisited under current experimental constraints |
authorswithroles_txt_mv |
Zhixiu, Wang @@aut@@ Hai, Li @@oth@@ Wangjie, Sun @@oth@@ Fenfen, Miao @@oth@@ Renguo, Song @@oth@@ Ziqiao, Zheng @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV014078635 |
dewey-sort |
3670 |
id |
ELV033889619 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033889619</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625195324.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S1875-5372(14)60111-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014010000013.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033889619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1875-5372(14)60111-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">77.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhixiu, Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Al-14Cu-7Ce alloy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">flow stress</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">strain compensation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hai, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wangjie, Sun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fenfen, Miao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Renguo, Song</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ziqiao, Zheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Su, Wei ELSEVIER</subfield><subfield code="t">SUSY effects in R b : Revisited under current experimental constraints</subfield><subfield code="d">2016transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV014078635</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1300-1303</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S1875-5372(14)60111-9</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">77.50</subfield><subfield code="j">Psychophysiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2014</subfield><subfield code="e">6</subfield><subfield code="h">1300-1303</subfield><subfield code="g">4</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">670</subfield></datafield></record></collection>
|
author |
Zhixiu, Wang |
spellingShingle |
Zhixiu, Wang ddc 670 ddc 530 ddc 610 bkl 77.50 Elsevier Al-14Cu-7Ce alloy Elsevier flow stress Elsevier strain compensation Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature |
authorStr |
Zhixiu, Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV014078635 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 530 - Physics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 670 DE-600 530 VZ 610 VZ 77.50 bkl Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature Al-14Cu-7Ce alloy Elsevier flow stress Elsevier strain compensation Elsevier |
topic |
ddc 670 ddc 530 ddc 610 bkl 77.50 Elsevier Al-14Cu-7Ce alloy Elsevier flow stress Elsevier strain compensation |
topic_unstemmed |
ddc 670 ddc 530 ddc 610 bkl 77.50 Elsevier Al-14Cu-7Ce alloy Elsevier flow stress Elsevier strain compensation |
topic_browse |
ddc 670 ddc 530 ddc 610 bkl 77.50 Elsevier Al-14Cu-7Ce alloy Elsevier flow stress Elsevier strain compensation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l h lh s w sw m f mf s r sr z z zz |
hierarchy_parent_title |
SUSY effects in R b : Revisited under current experimental constraints |
hierarchy_parent_id |
ELV014078635 |
dewey-tens |
670 - Manufacturing 530 - Physics 610 - Medicine & health |
hierarchy_top_title |
SUSY effects in R b : Revisited under current experimental constraints |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV014078635 |
title |
Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature |
ctrlnum |
(DE-627)ELV033889619 (ELSEVIER)S1875-5372(14)60111-9 |
title_full |
Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature |
author_sort |
Zhixiu, Wang |
journal |
SUSY effects in R b : Revisited under current experimental constraints |
journalStr |
SUSY effects in R b : Revisited under current experimental constraints |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
1300 |
author_browse |
Zhixiu, Wang |
container_volume |
43 |
physical |
4 |
class |
670 670 DE-600 530 VZ 610 VZ 77.50 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhixiu, Wang |
doi_str_mv |
10.1016/S1875-5372(14)60111-9 |
dewey-full |
670 530 610 |
title_sort |
modeling for predicting flow stress of al-14cu-7ce alloy at elevated temperature |
title_auth |
Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature |
abstract |
Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. |
abstractGer |
Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. |
abstract_unstemmed |
Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
6 |
title_short |
Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature |
url |
https://doi.org/10.1016/S1875-5372(14)60111-9 |
remote_bool |
true |
author2 |
Hai, Li Wangjie, Sun Fenfen, Miao Renguo, Song Ziqiao, Zheng |
author2Str |
Hai, Li Wangjie, Sun Fenfen, Miao Renguo, Song Ziqiao, Zheng |
ppnlink |
ELV014078635 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/S1875-5372(14)60111-9 |
up_date |
2024-07-06T19:44:17.596Z |
_version_ |
1803860110314831872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033889619</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625195324.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S1875-5372(14)60111-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014010000013.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033889619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1875-5372(14)60111-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">77.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhixiu, Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling for Predicting Flow Stress of Al-14Cu-7Ce Alloy at Elevated Temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Isothermal hot compression tests of annealed Al-14Cu-7Ce alloy were carried out on Gleeble-3500 system in the temperature range from 573 K to 823 K and the stain rate range from 0.001 s−1 to 1 s−1. The resulted true stress-true strain data were employed to establish a constitutive equation for predicting high temperature flow stress. The results show that the flow stress follow well the rate equation ɛ ˙ = A D L G b / κ T [ sinh ( α L σ / G ) ] n . The effect of strain was taken into account by fitting of polynomials into the material parameters A, αL and n. The proposed constitutive equation can predict precisely high temperature flow stress of Al-14Cu-7Ce alloy. The control mechanism of hot deformation is dislocation climb.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Al-14Cu-7Ce alloy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">flow stress</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">strain compensation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hai, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wangjie, Sun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fenfen, Miao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Renguo, Song</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ziqiao, Zheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Su, Wei ELSEVIER</subfield><subfield code="t">SUSY effects in R b : Revisited under current experimental constraints</subfield><subfield code="d">2016transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV014078635</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1300-1303</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S1875-5372(14)60111-9</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">77.50</subfield><subfield code="j">Psychophysiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2014</subfield><subfield code="e">6</subfield><subfield code="h">1300-1303</subfield><subfield code="g">4</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">670</subfield></datafield></record></collection>
|
score |
7.4008045 |