Retinal repair with induced pluripotent stem cells
Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigme...
Ausführliche Beschreibung
Autor*in: |
Al-Shamekh, Shomoukh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties - Muthuraja, A. ELSEVIER, 2015, the journal of laboratory and clinical medicine : the official publication of the Central Society for Clinical Research, New York, NY |
---|---|
Übergeordnetes Werk: |
volume:163 ; year:2014 ; number:4 ; pages:377-386 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.trsl.2013.11.002 |
---|
Katalog-ID: |
ELV033911428 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV033911428 | ||
003 | DE-627 | ||
005 | 20230625195345.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.trsl.2013.11.002 |2 doi | |
028 | 5 | 2 | |a GBVA2014011000011.pica |
035 | |a (DE-627)ELV033911428 | ||
035 | |a (ELSEVIER)S1931-5244(13)00381-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 610 | |
082 | 0 | 4 | |a 610 |q DE-600 |
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 670 |q VZ |
082 | 0 | 4 | |a 300 |q VZ |
084 | |a 70.00 |2 bkl | ||
084 | |a 71.00 |2 bkl | ||
100 | 1 | |a Al-Shamekh, Shomoukh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Retinal repair with induced pluripotent stem cells |
264 | 1 | |c 2014transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. | ||
520 | |a Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. | ||
650 | 7 | |a FGF |2 Elsevier | |
650 | 7 | |a RPC |2 Elsevier | |
650 | 7 | |a RPE |2 Elsevier | |
650 | 7 | |a iPSC |2 Elsevier | |
650 | 7 | |a IGF-1 |2 Elsevier | |
650 | 7 | |a FACS |2 Elsevier | |
650 | 7 | |a bFGF |2 Elsevier | |
650 | 7 | |a ECM |2 Elsevier | |
650 | 7 | |a BEST1 |2 Elsevier | |
650 | 7 | |a RA |2 Elsevier | |
650 | 7 | |a RGC |2 Elsevier | |
650 | 7 | |a SHH |2 Elsevier | |
650 | 7 | |a hiPSC |2 Elsevier | |
650 | 7 | |a IRBP |2 Elsevier | |
650 | 7 | |a AMD |2 Elsevier | |
650 | 7 | |a hESC |2 Elsevier | |
650 | 7 | |a RP |2 Elsevier | |
700 | 1 | |a Goldberg, Jeffrey L. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Muthuraja, A. ELSEVIER |t Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties |d 2015 |d the journal of laboratory and clinical medicine : the official publication of the Central Society for Clinical Research |g New York, NY |w (DE-627)ELV013179047 |
773 | 1 | 8 | |g volume:163 |g year:2014 |g number:4 |g pages:377-386 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.trsl.2013.11.002 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 70.00 |j Sozialwissenschaften allgemein: Allgemeines |q VZ |
936 | b | k | |a 71.00 |j Soziologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 163 |j 2014 |e 4 |h 377-386 |g 10 | ||
953 | |2 045F |a 610 |
author_variant |
s a s sas |
---|---|
matchkey_str |
alshamekhshomoukhgoldbergjeffreyl:2014----:eiarpiwtidcdlrpt |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
70.00 71.00 |
publishDate |
2014 |
allfields |
10.1016/j.trsl.2013.11.002 doi GBVA2014011000011.pica (DE-627)ELV033911428 (ELSEVIER)S1931-5244(13)00381-2 DE-627 ger DE-627 rakwb eng 610 610 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Al-Shamekh, Shomoukh verfasserin aut Retinal repair with induced pluripotent stem cells 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. FGF Elsevier RPC Elsevier RPE Elsevier iPSC Elsevier IGF-1 Elsevier FACS Elsevier bFGF Elsevier ECM Elsevier BEST1 Elsevier RA Elsevier RGC Elsevier SHH Elsevier hiPSC Elsevier IRBP Elsevier AMD Elsevier hESC Elsevier RP Elsevier Goldberg, Jeffrey L. oth Enthalten in Elsevier Muthuraja, A. ELSEVIER Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties 2015 the journal of laboratory and clinical medicine : the official publication of the Central Society for Clinical Research New York, NY (DE-627)ELV013179047 volume:163 year:2014 number:4 pages:377-386 extent:10 https://doi.org/10.1016/j.trsl.2013.11.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 163 2014 4 377-386 10 045F 610 |
spelling |
10.1016/j.trsl.2013.11.002 doi GBVA2014011000011.pica (DE-627)ELV033911428 (ELSEVIER)S1931-5244(13)00381-2 DE-627 ger DE-627 rakwb eng 610 610 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Al-Shamekh, Shomoukh verfasserin aut Retinal repair with induced pluripotent stem cells 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. FGF Elsevier RPC Elsevier RPE Elsevier iPSC Elsevier IGF-1 Elsevier FACS Elsevier bFGF Elsevier ECM Elsevier BEST1 Elsevier RA Elsevier RGC Elsevier SHH Elsevier hiPSC Elsevier IRBP Elsevier AMD Elsevier hESC Elsevier RP Elsevier Goldberg, Jeffrey L. oth Enthalten in Elsevier Muthuraja, A. ELSEVIER Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties 2015 the journal of laboratory and clinical medicine : the official publication of the Central Society for Clinical Research New York, NY (DE-627)ELV013179047 volume:163 year:2014 number:4 pages:377-386 extent:10 https://doi.org/10.1016/j.trsl.2013.11.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 163 2014 4 377-386 10 045F 610 |
allfields_unstemmed |
10.1016/j.trsl.2013.11.002 doi GBVA2014011000011.pica (DE-627)ELV033911428 (ELSEVIER)S1931-5244(13)00381-2 DE-627 ger DE-627 rakwb eng 610 610 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Al-Shamekh, Shomoukh verfasserin aut Retinal repair with induced pluripotent stem cells 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. FGF Elsevier RPC Elsevier RPE Elsevier iPSC Elsevier IGF-1 Elsevier FACS Elsevier bFGF Elsevier ECM Elsevier BEST1 Elsevier RA Elsevier RGC Elsevier SHH Elsevier hiPSC Elsevier IRBP Elsevier AMD Elsevier hESC Elsevier RP Elsevier Goldberg, Jeffrey L. oth Enthalten in Elsevier Muthuraja, A. ELSEVIER Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties 2015 the journal of laboratory and clinical medicine : the official publication of the Central Society for Clinical Research New York, NY (DE-627)ELV013179047 volume:163 year:2014 number:4 pages:377-386 extent:10 https://doi.org/10.1016/j.trsl.2013.11.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 163 2014 4 377-386 10 045F 610 |
allfieldsGer |
10.1016/j.trsl.2013.11.002 doi GBVA2014011000011.pica (DE-627)ELV033911428 (ELSEVIER)S1931-5244(13)00381-2 DE-627 ger DE-627 rakwb eng 610 610 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Al-Shamekh, Shomoukh verfasserin aut Retinal repair with induced pluripotent stem cells 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. FGF Elsevier RPC Elsevier RPE Elsevier iPSC Elsevier IGF-1 Elsevier FACS Elsevier bFGF Elsevier ECM Elsevier BEST1 Elsevier RA Elsevier RGC Elsevier SHH Elsevier hiPSC Elsevier IRBP Elsevier AMD Elsevier hESC Elsevier RP Elsevier Goldberg, Jeffrey L. oth Enthalten in Elsevier Muthuraja, A. ELSEVIER Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties 2015 the journal of laboratory and clinical medicine : the official publication of the Central Society for Clinical Research New York, NY (DE-627)ELV013179047 volume:163 year:2014 number:4 pages:377-386 extent:10 https://doi.org/10.1016/j.trsl.2013.11.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 163 2014 4 377-386 10 045F 610 |
allfieldsSound |
10.1016/j.trsl.2013.11.002 doi GBVA2014011000011.pica (DE-627)ELV033911428 (ELSEVIER)S1931-5244(13)00381-2 DE-627 ger DE-627 rakwb eng 610 610 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Al-Shamekh, Shomoukh verfasserin aut Retinal repair with induced pluripotent stem cells 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. FGF Elsevier RPC Elsevier RPE Elsevier iPSC Elsevier IGF-1 Elsevier FACS Elsevier bFGF Elsevier ECM Elsevier BEST1 Elsevier RA Elsevier RGC Elsevier SHH Elsevier hiPSC Elsevier IRBP Elsevier AMD Elsevier hESC Elsevier RP Elsevier Goldberg, Jeffrey L. oth Enthalten in Elsevier Muthuraja, A. ELSEVIER Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties 2015 the journal of laboratory and clinical medicine : the official publication of the Central Society for Clinical Research New York, NY (DE-627)ELV013179047 volume:163 year:2014 number:4 pages:377-386 extent:10 https://doi.org/10.1016/j.trsl.2013.11.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 163 2014 4 377-386 10 045F 610 |
language |
English |
source |
Enthalten in Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties New York, NY volume:163 year:2014 number:4 pages:377-386 extent:10 |
sourceStr |
Enthalten in Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties New York, NY volume:163 year:2014 number:4 pages:377-386 extent:10 |
format_phy_str_mv |
Article |
bklname |
Sozialwissenschaften allgemein: Allgemeines Soziologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
FGF RPC RPE iPSC IGF-1 FACS bFGF ECM BEST1 RA RGC SHH hiPSC IRBP AMD hESC RP |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties |
authorswithroles_txt_mv |
Al-Shamekh, Shomoukh @@aut@@ Goldberg, Jeffrey L. @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV013179047 |
dewey-sort |
3610 |
id |
ELV033911428 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033911428</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625195345.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.trsl.2013.11.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014011000011.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033911428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1931-5244(13)00381-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Al-Shamekh, Shomoukh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Retinal repair with induced pluripotent stem cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FGF</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RPC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RPE</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">iPSC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IGF-1</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FACS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">bFGF</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ECM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BEST1</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RGC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SHH</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">hiPSC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IRBP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">AMD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">hESC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldberg, Jeffrey L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Muthuraja, A. ELSEVIER</subfield><subfield code="t">Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties</subfield><subfield code="d">2015</subfield><subfield code="d">the journal of laboratory and clinical medicine : the official publication of the Central Society for Clinical Research</subfield><subfield code="g">New York, NY</subfield><subfield code="w">(DE-627)ELV013179047</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:163</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:377-386</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.trsl.2013.11.002</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">163</subfield><subfield code="j">2014</subfield><subfield code="e">4</subfield><subfield code="h">377-386</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
author |
Al-Shamekh, Shomoukh |
spellingShingle |
Al-Shamekh, Shomoukh ddc 610 ddc 530 ddc 620 ddc 670 ddc 300 bkl 70.00 bkl 71.00 Elsevier FGF Elsevier RPC Elsevier RPE Elsevier iPSC Elsevier IGF-1 Elsevier FACS Elsevier bFGF Elsevier ECM Elsevier BEST1 Elsevier RA Elsevier RGC Elsevier SHH Elsevier hiPSC Elsevier IRBP Elsevier AMD Elsevier hESC Elsevier RP Retinal repair with induced pluripotent stem cells |
authorStr |
Al-Shamekh, Shomoukh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013179047 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 530 - Physics 620 - Engineering & allied operations 670 - Manufacturing 300 - Social sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 610 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl Retinal repair with induced pluripotent stem cells FGF Elsevier RPC Elsevier RPE Elsevier iPSC Elsevier IGF-1 Elsevier FACS Elsevier bFGF Elsevier ECM Elsevier BEST1 Elsevier RA Elsevier RGC Elsevier SHH Elsevier hiPSC Elsevier IRBP Elsevier AMD Elsevier hESC Elsevier RP Elsevier |
topic |
ddc 610 ddc 530 ddc 620 ddc 670 ddc 300 bkl 70.00 bkl 71.00 Elsevier FGF Elsevier RPC Elsevier RPE Elsevier iPSC Elsevier IGF-1 Elsevier FACS Elsevier bFGF Elsevier ECM Elsevier BEST1 Elsevier RA Elsevier RGC Elsevier SHH Elsevier hiPSC Elsevier IRBP Elsevier AMD Elsevier hESC Elsevier RP |
topic_unstemmed |
ddc 610 ddc 530 ddc 620 ddc 670 ddc 300 bkl 70.00 bkl 71.00 Elsevier FGF Elsevier RPC Elsevier RPE Elsevier iPSC Elsevier IGF-1 Elsevier FACS Elsevier bFGF Elsevier ECM Elsevier BEST1 Elsevier RA Elsevier RGC Elsevier SHH Elsevier hiPSC Elsevier IRBP Elsevier AMD Elsevier hESC Elsevier RP |
topic_browse |
ddc 610 ddc 530 ddc 620 ddc 670 ddc 300 bkl 70.00 bkl 71.00 Elsevier FGF Elsevier RPC Elsevier RPE Elsevier iPSC Elsevier IGF-1 Elsevier FACS Elsevier bFGF Elsevier ECM Elsevier BEST1 Elsevier RA Elsevier RGC Elsevier SHH Elsevier hiPSC Elsevier IRBP Elsevier AMD Elsevier hESC Elsevier RP |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j l g jl jlg |
hierarchy_parent_title |
Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties |
hierarchy_parent_id |
ELV013179047 |
dewey-tens |
610 - Medicine & health 530 - Physics 620 - Engineering 670 - Manufacturing 300 - Social sciences, sociology & anthropology |
hierarchy_top_title |
Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013179047 |
title |
Retinal repair with induced pluripotent stem cells |
ctrlnum |
(DE-627)ELV033911428 (ELSEVIER)S1931-5244(13)00381-2 |
title_full |
Retinal repair with induced pluripotent stem cells |
author_sort |
Al-Shamekh, Shomoukh |
journal |
Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties |
journalStr |
Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
377 |
author_browse |
Al-Shamekh, Shomoukh |
container_volume |
163 |
physical |
10 |
class |
610 610 DE-600 530 VZ 620 VZ 670 VZ 300 VZ 70.00 bkl 71.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Al-Shamekh, Shomoukh |
doi_str_mv |
10.1016/j.trsl.2013.11.002 |
dewey-full |
610 530 620 670 300 |
title_sort |
retinal repair with induced pluripotent stem cells |
title_auth |
Retinal repair with induced pluripotent stem cells |
abstract |
Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. |
abstractGer |
Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. |
abstract_unstemmed |
Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
4 |
title_short |
Retinal repair with induced pluripotent stem cells |
url |
https://doi.org/10.1016/j.trsl.2013.11.002 |
remote_bool |
true |
author2 |
Goldberg, Jeffrey L. |
author2Str |
Goldberg, Jeffrey L. |
ppnlink |
ELV013179047 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.trsl.2013.11.002 |
up_date |
2024-07-06T19:47:15.746Z |
_version_ |
1803860297119694848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033911428</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625195345.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.trsl.2013.11.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014011000011.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033911428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1931-5244(13)00381-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Al-Shamekh, Shomoukh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Retinal repair with induced pluripotent stem cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Retinal degeneration such as age-related macular degeneration and other inherited forms, such as Stargardt's disease and retinitis pigmentosa, and optic neuropathies including glaucoma and ischemic optic neuropathy are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors in the former, and to retinal ganglion cell axons in the optic nerve and their cell bodies in the retina in the latter diseases lead to the eventual death of these retinal cells, and in humans there is no endogenous replacement or repair. Cell replacement therapies provide 1 avenue to restore function in these diseases, particularly in the case of retinal repair, although there are considerable issues to overcome, including the differentiation and integration of the transplanted cells. What stem cell sources could be used for such therapies? One promising source is induced pluripotent stem cells (iPSCs), which could be drawn from an individual patient needing therapy, or generated and banked from select donors. We review developing research in the use of iPSCs for retinal cell replacement therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FGF</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RPC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RPE</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">iPSC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IGF-1</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FACS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">bFGF</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ECM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BEST1</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RGC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SHH</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">hiPSC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IRBP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">AMD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">hESC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldberg, Jeffrey L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Muthuraja, A. ELSEVIER</subfield><subfield code="t">Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties</subfield><subfield code="d">2015</subfield><subfield code="d">the journal of laboratory and clinical medicine : the official publication of the Central Society for Clinical Research</subfield><subfield code="g">New York, NY</subfield><subfield code="w">(DE-627)ELV013179047</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:163</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:377-386</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.trsl.2013.11.002</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">163</subfield><subfield code="j">2014</subfield><subfield code="e">4</subfield><subfield code="h">377-386</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
score |
7.398796 |