IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome
Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation...
Ausführliche Beschreibung
Autor*in: |
Katzav, Aviva [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Influence of the wind farm integration on load flow and voltage in electrical power system - imen, Labed ELSEVIER, 2016, London |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2014 ; pages:86-93 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.jaut.2014.07.006 |
---|
Katalog-ID: |
ELV033973504 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV033973504 | ||
003 | DE-627 | ||
005 | 20230625195526.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jaut.2014.07.006 |2 doi | |
028 | 5 | 2 | |a GBVA2014013000016.pica |
035 | |a (DE-627)ELV033973504 | ||
035 | |a (ELSEVIER)S0896-8411(14)00125-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 610 | |
082 | 0 | 4 | |a 610 |q DE-600 |
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Katzav, Aviva |e verfasserin |4 aut | |
245 | 1 | 0 | |a IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome |
264 | 1 | |c 2014transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. | ||
520 | |a Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. | ||
650 | 7 | |a Hyperactivity |2 Elsevier | |
650 | 7 | |a Experimental antiphospholipid syndrome |2 Elsevier | |
650 | 7 | |a Inhibitory interneurons |2 Elsevier | |
650 | 7 | |a Antiphospholipid antibodies |2 Elsevier | |
650 | 7 | |a Blood brain barrier |2 Elsevier | |
650 | 7 | |a Hippocampus |2 Elsevier | |
700 | 1 | |a Menachem, Assaf |4 oth | |
700 | 1 | |a Maggio, Nicola |4 oth | |
700 | 1 | |a Pollak, Lea |4 oth | |
700 | 1 | |a Pick, Chaim G. |4 oth | |
700 | 1 | |a Chapman, Joab |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Academic Press |a imen, Labed ELSEVIER |t Influence of the wind farm integration on load flow and voltage in electrical power system |d 2016 |g London |w (DE-627)ELV014127067 |
773 | 1 | 8 | |g volume:55 |g year:2014 |g pages:86-93 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jaut.2014.07.006 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 55 |j 2014 |h 86-93 |g 8 | ||
953 | |2 045F |a 610 |
author_variant |
a k ak |
---|---|
matchkey_str |
katzavavivamenachemassafmaggionicolapoll:2014----:gacmltsnniioyipcmanuosfxeietln |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
44.94 |
publishDate |
2014 |
allfields |
10.1016/j.jaut.2014.07.006 doi GBVA2014013000016.pica (DE-627)ELV033973504 (ELSEVIER)S0896-8411(14)00125-5 DE-627 ger DE-627 rakwb eng 610 610 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl Katzav, Aviva verfasserin aut IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. Hyperactivity Elsevier Experimental antiphospholipid syndrome Elsevier Inhibitory interneurons Elsevier Antiphospholipid antibodies Elsevier Blood brain barrier Elsevier Hippocampus Elsevier Menachem, Assaf oth Maggio, Nicola oth Pollak, Lea oth Pick, Chaim G. oth Chapman, Joab oth Enthalten in Academic Press imen, Labed ELSEVIER Influence of the wind farm integration on load flow and voltage in electrical power system 2016 London (DE-627)ELV014127067 volume:55 year:2014 pages:86-93 extent:8 https://doi.org/10.1016/j.jaut.2014.07.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 55 2014 86-93 8 045F 610 |
spelling |
10.1016/j.jaut.2014.07.006 doi GBVA2014013000016.pica (DE-627)ELV033973504 (ELSEVIER)S0896-8411(14)00125-5 DE-627 ger DE-627 rakwb eng 610 610 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl Katzav, Aviva verfasserin aut IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. Hyperactivity Elsevier Experimental antiphospholipid syndrome Elsevier Inhibitory interneurons Elsevier Antiphospholipid antibodies Elsevier Blood brain barrier Elsevier Hippocampus Elsevier Menachem, Assaf oth Maggio, Nicola oth Pollak, Lea oth Pick, Chaim G. oth Chapman, Joab oth Enthalten in Academic Press imen, Labed ELSEVIER Influence of the wind farm integration on load flow and voltage in electrical power system 2016 London (DE-627)ELV014127067 volume:55 year:2014 pages:86-93 extent:8 https://doi.org/10.1016/j.jaut.2014.07.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 55 2014 86-93 8 045F 610 |
allfields_unstemmed |
10.1016/j.jaut.2014.07.006 doi GBVA2014013000016.pica (DE-627)ELV033973504 (ELSEVIER)S0896-8411(14)00125-5 DE-627 ger DE-627 rakwb eng 610 610 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl Katzav, Aviva verfasserin aut IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. Hyperactivity Elsevier Experimental antiphospholipid syndrome Elsevier Inhibitory interneurons Elsevier Antiphospholipid antibodies Elsevier Blood brain barrier Elsevier Hippocampus Elsevier Menachem, Assaf oth Maggio, Nicola oth Pollak, Lea oth Pick, Chaim G. oth Chapman, Joab oth Enthalten in Academic Press imen, Labed ELSEVIER Influence of the wind farm integration on load flow and voltage in electrical power system 2016 London (DE-627)ELV014127067 volume:55 year:2014 pages:86-93 extent:8 https://doi.org/10.1016/j.jaut.2014.07.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 55 2014 86-93 8 045F 610 |
allfieldsGer |
10.1016/j.jaut.2014.07.006 doi GBVA2014013000016.pica (DE-627)ELV033973504 (ELSEVIER)S0896-8411(14)00125-5 DE-627 ger DE-627 rakwb eng 610 610 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl Katzav, Aviva verfasserin aut IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. Hyperactivity Elsevier Experimental antiphospholipid syndrome Elsevier Inhibitory interneurons Elsevier Antiphospholipid antibodies Elsevier Blood brain barrier Elsevier Hippocampus Elsevier Menachem, Assaf oth Maggio, Nicola oth Pollak, Lea oth Pick, Chaim G. oth Chapman, Joab oth Enthalten in Academic Press imen, Labed ELSEVIER Influence of the wind farm integration on load flow and voltage in electrical power system 2016 London (DE-627)ELV014127067 volume:55 year:2014 pages:86-93 extent:8 https://doi.org/10.1016/j.jaut.2014.07.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 55 2014 86-93 8 045F 610 |
allfieldsSound |
10.1016/j.jaut.2014.07.006 doi GBVA2014013000016.pica (DE-627)ELV033973504 (ELSEVIER)S0896-8411(14)00125-5 DE-627 ger DE-627 rakwb eng 610 610 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl Katzav, Aviva verfasserin aut IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome 2014transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. Hyperactivity Elsevier Experimental antiphospholipid syndrome Elsevier Inhibitory interneurons Elsevier Antiphospholipid antibodies Elsevier Blood brain barrier Elsevier Hippocampus Elsevier Menachem, Assaf oth Maggio, Nicola oth Pollak, Lea oth Pick, Chaim G. oth Chapman, Joab oth Enthalten in Academic Press imen, Labed ELSEVIER Influence of the wind farm integration on load flow and voltage in electrical power system 2016 London (DE-627)ELV014127067 volume:55 year:2014 pages:86-93 extent:8 https://doi.org/10.1016/j.jaut.2014.07.006 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 55 2014 86-93 8 045F 610 |
language |
English |
source |
Enthalten in Influence of the wind farm integration on load flow and voltage in electrical power system London volume:55 year:2014 pages:86-93 extent:8 |
sourceStr |
Enthalten in Influence of the wind farm integration on load flow and voltage in electrical power system London volume:55 year:2014 pages:86-93 extent:8 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Hyperactivity Experimental antiphospholipid syndrome Inhibitory interneurons Antiphospholipid antibodies Blood brain barrier Hippocampus |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Influence of the wind farm integration on load flow and voltage in electrical power system |
authorswithroles_txt_mv |
Katzav, Aviva @@aut@@ Menachem, Assaf @@oth@@ Maggio, Nicola @@oth@@ Pollak, Lea @@oth@@ Pick, Chaim G. @@oth@@ Chapman, Joab @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV014127067 |
dewey-sort |
3610 |
id |
ELV033973504 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033973504</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625195526.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jaut.2014.07.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014013000016.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033973504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0896-8411(14)00125-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Katzav, Aviva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hyperactivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Experimental antiphospholipid syndrome</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inhibitory interneurons</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Antiphospholipid antibodies</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Blood brain barrier</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hippocampus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Menachem, Assaf</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maggio, Nicola</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pollak, Lea</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pick, Chaim G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chapman, Joab</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">imen, Labed ELSEVIER</subfield><subfield code="t">Influence of the wind farm integration on load flow and voltage in electrical power system</subfield><subfield code="d">2016</subfield><subfield code="g">London</subfield><subfield code="w">(DE-627)ELV014127067</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:86-93</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jaut.2014.07.006</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2014</subfield><subfield code="h">86-93</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
author |
Katzav, Aviva |
spellingShingle |
Katzav, Aviva ddc 610 ddc 660 ddc 620 bkl 44.94 Elsevier Hyperactivity Elsevier Experimental antiphospholipid syndrome Elsevier Inhibitory interneurons Elsevier Antiphospholipid antibodies Elsevier Blood brain barrier Elsevier Hippocampus IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome |
authorStr |
Katzav, Aviva |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV014127067 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 660 - Chemical engineering 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 610 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome Hyperactivity Elsevier Experimental antiphospholipid syndrome Elsevier Inhibitory interneurons Elsevier Antiphospholipid antibodies Elsevier Blood brain barrier Elsevier Hippocampus Elsevier |
topic |
ddc 610 ddc 660 ddc 620 bkl 44.94 Elsevier Hyperactivity Elsevier Experimental antiphospholipid syndrome Elsevier Inhibitory interneurons Elsevier Antiphospholipid antibodies Elsevier Blood brain barrier Elsevier Hippocampus |
topic_unstemmed |
ddc 610 ddc 660 ddc 620 bkl 44.94 Elsevier Hyperactivity Elsevier Experimental antiphospholipid syndrome Elsevier Inhibitory interneurons Elsevier Antiphospholipid antibodies Elsevier Blood brain barrier Elsevier Hippocampus |
topic_browse |
ddc 610 ddc 660 ddc 620 bkl 44.94 Elsevier Hyperactivity Elsevier Experimental antiphospholipid syndrome Elsevier Inhibitory interneurons Elsevier Antiphospholipid antibodies Elsevier Blood brain barrier Elsevier Hippocampus |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a m am n m nm l p lp c g p cg cgp j c jc |
hierarchy_parent_title |
Influence of the wind farm integration on load flow and voltage in electrical power system |
hierarchy_parent_id |
ELV014127067 |
dewey-tens |
610 - Medicine & health 660 - Chemical engineering 620 - Engineering |
hierarchy_top_title |
Influence of the wind farm integration on load flow and voltage in electrical power system |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV014127067 |
title |
IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome |
ctrlnum |
(DE-627)ELV033973504 (ELSEVIER)S0896-8411(14)00125-5 |
title_full |
IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome |
author_sort |
Katzav, Aviva |
journal |
Influence of the wind farm integration on load flow and voltage in electrical power system |
journalStr |
Influence of the wind farm integration on load flow and voltage in electrical power system |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
86 |
author_browse |
Katzav, Aviva |
container_volume |
55 |
physical |
8 |
class |
610 610 DE-600 660 VZ 620 VZ 610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Katzav, Aviva |
doi_str_mv |
10.1016/j.jaut.2014.07.006 |
dewey-full |
610 660 620 |
title_sort |
igg accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome |
title_auth |
IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome |
abstract |
Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. |
abstractGer |
Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. |
abstract_unstemmed |
Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome |
url |
https://doi.org/10.1016/j.jaut.2014.07.006 |
remote_bool |
true |
author2 |
Menachem, Assaf Maggio, Nicola Pollak, Lea Pick, Chaim G. Chapman, Joab |
author2Str |
Menachem, Assaf Maggio, Nicola Pollak, Lea Pick, Chaim G. Chapman, Joab |
ppnlink |
ELV014127067 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.jaut.2014.07.006 |
up_date |
2024-07-06T19:56:44.992Z |
_version_ |
1803860894016339968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV033973504</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625195526.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jaut.2014.07.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014013000016.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV033973504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0896-8411(14)00125-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Katzav, Aviva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mice immunized with β2-glycoprotein I (β2GPI) are an experimental model of the antiphospholipid syndrome (eAPS) displaying elevated titers of antiphospholipid antibodies (aPL). We presently studied whether the behavioral hyperactivity in eAPS mice is associated with in vivo binding and accumulation of IgG in the brain. At 6 weeks post immunization eAPS mice had significantly higher levels of aPL (1.32 ± 0.28 and 0.02 ± 0.01 AU, p < 0.001 by t-test) compared to adjuvant immunized controls, as measured by ELISA. Significant hyperactivity in a staircase test in the eAPS mice compared to controls was found in stair-climbing (18.4 ± 0.9 and 12.0 ± 1.7, respectively) and rearing measures (23.5 ± 2.1 and 12.5 ± 1.9, p < 0.01 by t-test). Immunofluorescence staining in eAPS mice revealed significant in vivo accumulation of IgG in cortical and hippocampal neurons which was not seen in controls. Staining for IgG was markedly intense in inhibitory interneurons co-stained for GAD67 in the hippocampus of eAPS mice. The integrity of the blood brain barrier (BBB) evaluated by injection of Evans blue (EB) was impaired in eAPS and adjuvant immunized mice compared to naïve mice. Electrophysiological recordings in hippocampal brain slices showed altered response to paired pulse stimulation as well as dysregulation of carbachol-induced γ- oscillations in eAPS mice compared to control. Penetration into the brain and direct interaction of aPL with inhibitory interneurons in the hippocampus may explain the hyperactive behavior of the eAPS mice. A direct role of aPL in causing CNS dysfunction points to these antibodies as an important therapeutic target in APS.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hyperactivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Experimental antiphospholipid syndrome</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inhibitory interneurons</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Antiphospholipid antibodies</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Blood brain barrier</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hippocampus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Menachem, Assaf</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maggio, Nicola</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pollak, Lea</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pick, Chaim G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chapman, Joab</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">imen, Labed ELSEVIER</subfield><subfield code="t">Influence of the wind farm integration on load flow and voltage in electrical power system</subfield><subfield code="d">2016</subfield><subfield code="g">London</subfield><subfield code="w">(DE-627)ELV014127067</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:86-93</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jaut.2014.07.006</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2014</subfield><subfield code="h">86-93</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
score |
7.40108 |