Optimal control for chatter mitigation in milling—Part 2: Experimental validation
The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence...
Ausführliche Beschreibung
Autor*in: |
Monnin, Jérémie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Banana leaves ashes as pozzolan for concrete and mortar of Portland cement - Kanning, Rodrigo C. ELSEVIER, 2014, a journal of IFAC, the International Federation of Automatic Control, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2014 ; pages:167-175 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.conengprac.2013.11.011 |
---|
Katalog-ID: |
ELV03404647X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV03404647X | ||
003 | DE-627 | ||
005 | 20230625195718.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.conengprac.2013.11.011 |2 doi | |
028 | 5 | 2 | |a GBVA2014015000028.pica |
035 | |a (DE-627)ELV03404647X | ||
035 | |a (ELSEVIER)S0967-0661(13)00215-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 620 | |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 690 |q VZ |
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Monnin, Jérémie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimal control for chatter mitigation in milling—Part 2: Experimental validation |
264 | 1 | |c 2014transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. | ||
520 | |a The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. | ||
650 | 7 | |a Regenerative chatter |2 Elsevier | |
650 | 7 | |a Mechatronic system |2 Elsevier | |
650 | 7 | |a Active structural method |2 Elsevier | |
650 | 7 | |a Optimal control |2 Elsevier | |
650 | 7 | |a Milling |2 Elsevier | |
700 | 1 | |a Kuster, Fredy |4 oth | |
700 | 1 | |a Wegener, Konrad |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Kanning, Rodrigo C. ELSEVIER |t Banana leaves ashes as pozzolan for concrete and mortar of Portland cement |d 2014 |d a journal of IFAC, the International Federation of Automatic Control |g Amsterdam [u.a.] |w (DE-627)ELV01245530X |
773 | 1 | 8 | |g volume:24 |g year:2014 |g pages:167-175 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.conengprac.2013.11.011 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_40 | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 24 |j 2014 |h 167-175 |g 9 | ||
953 | |2 045F |a 620 |
author_variant |
j m jm |
---|---|
matchkey_str |
monninjrmiekusterfredywegenerkonrad:2014----:piacnrlocatriiainnilnpr2x |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2014 |
allfields |
10.1016/j.conengprac.2013.11.011 doi GBVA2014015000028.pica (DE-627)ELV03404647X (ELSEVIER)S0967-0661(13)00215-3 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Monnin, Jérémie verfasserin aut Optimal control for chatter mitigation in milling—Part 2: Experimental validation 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. Regenerative chatter Elsevier Mechatronic system Elsevier Active structural method Elsevier Optimal control Elsevier Milling Elsevier Kuster, Fredy oth Wegener, Konrad oth Enthalten in Elsevier Science Kanning, Rodrigo C. ELSEVIER Banana leaves ashes as pozzolan for concrete and mortar of Portland cement 2014 a journal of IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV01245530X volume:24 year:2014 pages:167-175 extent:9 https://doi.org/10.1016/j.conengprac.2013.11.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_40 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 24 2014 167-175 9 045F 620 |
spelling |
10.1016/j.conengprac.2013.11.011 doi GBVA2014015000028.pica (DE-627)ELV03404647X (ELSEVIER)S0967-0661(13)00215-3 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Monnin, Jérémie verfasserin aut Optimal control for chatter mitigation in milling—Part 2: Experimental validation 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. Regenerative chatter Elsevier Mechatronic system Elsevier Active structural method Elsevier Optimal control Elsevier Milling Elsevier Kuster, Fredy oth Wegener, Konrad oth Enthalten in Elsevier Science Kanning, Rodrigo C. ELSEVIER Banana leaves ashes as pozzolan for concrete and mortar of Portland cement 2014 a journal of IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV01245530X volume:24 year:2014 pages:167-175 extent:9 https://doi.org/10.1016/j.conengprac.2013.11.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_40 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 24 2014 167-175 9 045F 620 |
allfields_unstemmed |
10.1016/j.conengprac.2013.11.011 doi GBVA2014015000028.pica (DE-627)ELV03404647X (ELSEVIER)S0967-0661(13)00215-3 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Monnin, Jérémie verfasserin aut Optimal control for chatter mitigation in milling—Part 2: Experimental validation 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. Regenerative chatter Elsevier Mechatronic system Elsevier Active structural method Elsevier Optimal control Elsevier Milling Elsevier Kuster, Fredy oth Wegener, Konrad oth Enthalten in Elsevier Science Kanning, Rodrigo C. ELSEVIER Banana leaves ashes as pozzolan for concrete and mortar of Portland cement 2014 a journal of IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV01245530X volume:24 year:2014 pages:167-175 extent:9 https://doi.org/10.1016/j.conengprac.2013.11.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_40 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 24 2014 167-175 9 045F 620 |
allfieldsGer |
10.1016/j.conengprac.2013.11.011 doi GBVA2014015000028.pica (DE-627)ELV03404647X (ELSEVIER)S0967-0661(13)00215-3 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Monnin, Jérémie verfasserin aut Optimal control for chatter mitigation in milling—Part 2: Experimental validation 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. Regenerative chatter Elsevier Mechatronic system Elsevier Active structural method Elsevier Optimal control Elsevier Milling Elsevier Kuster, Fredy oth Wegener, Konrad oth Enthalten in Elsevier Science Kanning, Rodrigo C. ELSEVIER Banana leaves ashes as pozzolan for concrete and mortar of Portland cement 2014 a journal of IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV01245530X volume:24 year:2014 pages:167-175 extent:9 https://doi.org/10.1016/j.conengprac.2013.11.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_40 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 24 2014 167-175 9 045F 620 |
allfieldsSound |
10.1016/j.conengprac.2013.11.011 doi GBVA2014015000028.pica (DE-627)ELV03404647X (ELSEVIER)S0967-0661(13)00215-3 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Monnin, Jérémie verfasserin aut Optimal control for chatter mitigation in milling—Part 2: Experimental validation 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. Regenerative chatter Elsevier Mechatronic system Elsevier Active structural method Elsevier Optimal control Elsevier Milling Elsevier Kuster, Fredy oth Wegener, Konrad oth Enthalten in Elsevier Science Kanning, Rodrigo C. ELSEVIER Banana leaves ashes as pozzolan for concrete and mortar of Portland cement 2014 a journal of IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV01245530X volume:24 year:2014 pages:167-175 extent:9 https://doi.org/10.1016/j.conengprac.2013.11.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_40 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 24 2014 167-175 9 045F 620 |
language |
English |
source |
Enthalten in Banana leaves ashes as pozzolan for concrete and mortar of Portland cement Amsterdam [u.a.] volume:24 year:2014 pages:167-175 extent:9 |
sourceStr |
Enthalten in Banana leaves ashes as pozzolan for concrete and mortar of Portland cement Amsterdam [u.a.] volume:24 year:2014 pages:167-175 extent:9 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Regenerative chatter Mechatronic system Active structural method Optimal control Milling |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Banana leaves ashes as pozzolan for concrete and mortar of Portland cement |
authorswithroles_txt_mv |
Monnin, Jérémie @@aut@@ Kuster, Fredy @@oth@@ Wegener, Konrad @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV01245530X |
dewey-sort |
3620 |
id |
ELV03404647X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV03404647X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625195718.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.conengprac.2013.11.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014015000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV03404647X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0967-0661(13)00215-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Monnin, Jérémie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal control for chatter mitigation in milling—Part 2: Experimental validation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regenerative chatter</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechatronic system</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Active structural method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimal control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Milling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuster, Fredy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wegener, Konrad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Kanning, Rodrigo C. ELSEVIER</subfield><subfield code="t">Banana leaves ashes as pozzolan for concrete and mortar of Portland cement</subfield><subfield code="d">2014</subfield><subfield code="d">a journal of IFAC, the International Federation of Automatic Control</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV01245530X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:167-175</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.conengprac.2013.11.011</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2014</subfield><subfield code="h">167-175</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
author |
Monnin, Jérémie |
spellingShingle |
Monnin, Jérémie ddc 620 ddc 690 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Regenerative chatter Elsevier Mechatronic system Elsevier Active structural method Elsevier Optimal control Elsevier Milling Optimal control for chatter mitigation in milling—Part 2: Experimental validation |
authorStr |
Monnin, Jérémie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV01245530X |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 690 - Buildings 333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 620 DE-600 690 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Optimal control for chatter mitigation in milling—Part 2: Experimental validation Regenerative chatter Elsevier Mechatronic system Elsevier Active structural method Elsevier Optimal control Elsevier Milling Elsevier |
topic |
ddc 620 ddc 690 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Regenerative chatter Elsevier Mechatronic system Elsevier Active structural method Elsevier Optimal control Elsevier Milling |
topic_unstemmed |
ddc 620 ddc 690 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Regenerative chatter Elsevier Mechatronic system Elsevier Active structural method Elsevier Optimal control Elsevier Milling |
topic_browse |
ddc 620 ddc 690 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Regenerative chatter Elsevier Mechatronic system Elsevier Active structural method Elsevier Optimal control Elsevier Milling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
f k fk k w kw |
hierarchy_parent_title |
Banana leaves ashes as pozzolan for concrete and mortar of Portland cement |
hierarchy_parent_id |
ELV01245530X |
dewey-tens |
620 - Engineering 690 - Building & construction 330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Banana leaves ashes as pozzolan for concrete and mortar of Portland cement |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV01245530X |
title |
Optimal control for chatter mitigation in milling—Part 2: Experimental validation |
ctrlnum |
(DE-627)ELV03404647X (ELSEVIER)S0967-0661(13)00215-3 |
title_full |
Optimal control for chatter mitigation in milling—Part 2: Experimental validation |
author_sort |
Monnin, Jérémie |
journal |
Banana leaves ashes as pozzolan for concrete and mortar of Portland cement |
journalStr |
Banana leaves ashes as pozzolan for concrete and mortar of Portland cement |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
167 |
author_browse |
Monnin, Jérémie |
container_volume |
24 |
physical |
9 |
class |
620 620 DE-600 690 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Monnin, Jérémie |
doi_str_mv |
10.1016/j.conengprac.2013.11.011 |
dewey-full |
620 690 333.7 610 |
title_sort |
optimal control for chatter mitigation in milling—part 2: experimental validation |
title_auth |
Optimal control for chatter mitigation in milling—Part 2: Experimental validation |
abstract |
The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. |
abstractGer |
The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. |
abstract_unstemmed |
The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_40 |
title_short |
Optimal control for chatter mitigation in milling—Part 2: Experimental validation |
url |
https://doi.org/10.1016/j.conengprac.2013.11.011 |
remote_bool |
true |
author2 |
Kuster, Fredy Wegener, Konrad |
author2Str |
Kuster, Fredy Wegener, Konrad |
ppnlink |
ELV01245530X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.conengprac.2013.11.011 |
up_date |
2024-07-06T20:07:54.205Z |
_version_ |
1803861595735982080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV03404647X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625195718.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.conengprac.2013.11.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014015000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV03404647X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0967-0661(13)00215-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Monnin, Jérémie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal control for chatter mitigation in milling—Part 2: Experimental validation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The productivity of milling operations in chatter-free conditions can be improved using active structural methods. This paper presents the use of a mechatronic system integrated into the spindle unit combined with two different optimal control strategies. The first one aims to minimize the influence of cutting forces on tool tip deviations. The second one explicitly considers the process interaction and attempts to stabilize the overall closed-loop system for specific machining conditions. The first part of this two-part paper describes the modeling and formulation used for both strategies. In this second part, the experimental validation of the proposed concept is presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regenerative chatter</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechatronic system</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Active structural method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimal control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Milling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuster, Fredy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wegener, Konrad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Kanning, Rodrigo C. ELSEVIER</subfield><subfield code="t">Banana leaves ashes as pozzolan for concrete and mortar of Portland cement</subfield><subfield code="d">2014</subfield><subfield code="d">a journal of IFAC, the International Federation of Automatic Control</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV01245530X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:167-175</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.conengprac.2013.11.011</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2014</subfield><subfield code="h">167-175</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
score |
7.400893 |