Web based visualization of large climate data sets
We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled tempera...
Ausführliche Beschreibung
Autor*in: |
Alder, J.R. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation - Zhu, Ting-Lei ELSEVIER, 2014, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:68 ; year:2015 ; pages:175-180 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.envsoft.2015.02.016 |
---|
Katalog-ID: |
ELV034351590 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV034351590 | ||
003 | DE-627 | ||
005 | 20230625200656.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.envsoft.2015.02.016 |2 doi | |
028 | 5 | 2 | |a GBV00000000000194A.pica |
035 | |a (DE-627)ELV034351590 | ||
035 | |a (ELSEVIER)S1364-8152(15)00065-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 690 |a 004 | |
082 | 0 | 4 | |a 690 |q DE-600 |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 520 |q VZ |
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 610 |a 570 |q VZ |
084 | |a 44.89 |2 bkl | ||
100 | 1 | |a Alder, J.R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Web based visualization of large climate data sets |
264 | 1 | |c 2015transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. | ||
520 | |a We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. | ||
650 | 7 | |a Visualization |2 Elsevier | |
650 | 7 | |a Statistical downscaling |2 Elsevier | |
650 | 7 | |a Climate modeling |2 Elsevier | |
650 | 7 | |a Big data |2 Elsevier | |
700 | 1 | |a Hostetler, S.W. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Zhu, Ting-Lei ELSEVIER |t Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |d 2014 |g Amsterdam [u.a.] |w (DE-627)ELV017414318 |
773 | 1 | 8 | |g volume:68 |g year:2015 |g pages:175-180 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.envsoft.2015.02.016 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 44.89 |j Endokrinologie |q VZ |
951 | |a AR | ||
952 | |d 68 |j 2015 |h 175-180 |g 6 | ||
953 | |2 045F |a 690 |
author_variant |
j a ja |
---|---|
matchkey_str |
alderjrhostetlersw:2015----:ebsdiulztoolrel |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
44.89 |
publishDate |
2015 |
allfields |
10.1016/j.envsoft.2015.02.016 doi GBV00000000000194A.pica (DE-627)ELV034351590 (ELSEVIER)S1364-8152(15)00065-1 DE-627 ger DE-627 rakwb eng 690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Alder, J.R. verfasserin aut Web based visualization of large climate data sets 2015transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. Visualization Elsevier Statistical downscaling Elsevier Climate modeling Elsevier Big data Elsevier Hostetler, S.W. oth Enthalten in Elsevier Science Zhu, Ting-Lei ELSEVIER Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation 2014 Amsterdam [u.a.] (DE-627)ELV017414318 volume:68 year:2015 pages:175-180 extent:6 https://doi.org/10.1016/j.envsoft.2015.02.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 44.89 Endokrinologie VZ AR 68 2015 175-180 6 045F 690 |
spelling |
10.1016/j.envsoft.2015.02.016 doi GBV00000000000194A.pica (DE-627)ELV034351590 (ELSEVIER)S1364-8152(15)00065-1 DE-627 ger DE-627 rakwb eng 690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Alder, J.R. verfasserin aut Web based visualization of large climate data sets 2015transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. Visualization Elsevier Statistical downscaling Elsevier Climate modeling Elsevier Big data Elsevier Hostetler, S.W. oth Enthalten in Elsevier Science Zhu, Ting-Lei ELSEVIER Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation 2014 Amsterdam [u.a.] (DE-627)ELV017414318 volume:68 year:2015 pages:175-180 extent:6 https://doi.org/10.1016/j.envsoft.2015.02.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 44.89 Endokrinologie VZ AR 68 2015 175-180 6 045F 690 |
allfields_unstemmed |
10.1016/j.envsoft.2015.02.016 doi GBV00000000000194A.pica (DE-627)ELV034351590 (ELSEVIER)S1364-8152(15)00065-1 DE-627 ger DE-627 rakwb eng 690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Alder, J.R. verfasserin aut Web based visualization of large climate data sets 2015transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. Visualization Elsevier Statistical downscaling Elsevier Climate modeling Elsevier Big data Elsevier Hostetler, S.W. oth Enthalten in Elsevier Science Zhu, Ting-Lei ELSEVIER Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation 2014 Amsterdam [u.a.] (DE-627)ELV017414318 volume:68 year:2015 pages:175-180 extent:6 https://doi.org/10.1016/j.envsoft.2015.02.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 44.89 Endokrinologie VZ AR 68 2015 175-180 6 045F 690 |
allfieldsGer |
10.1016/j.envsoft.2015.02.016 doi GBV00000000000194A.pica (DE-627)ELV034351590 (ELSEVIER)S1364-8152(15)00065-1 DE-627 ger DE-627 rakwb eng 690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Alder, J.R. verfasserin aut Web based visualization of large climate data sets 2015transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. Visualization Elsevier Statistical downscaling Elsevier Climate modeling Elsevier Big data Elsevier Hostetler, S.W. oth Enthalten in Elsevier Science Zhu, Ting-Lei ELSEVIER Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation 2014 Amsterdam [u.a.] (DE-627)ELV017414318 volume:68 year:2015 pages:175-180 extent:6 https://doi.org/10.1016/j.envsoft.2015.02.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 44.89 Endokrinologie VZ AR 68 2015 175-180 6 045F 690 |
allfieldsSound |
10.1016/j.envsoft.2015.02.016 doi GBV00000000000194A.pica (DE-627)ELV034351590 (ELSEVIER)S1364-8152(15)00065-1 DE-627 ger DE-627 rakwb eng 690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Alder, J.R. verfasserin aut Web based visualization of large climate data sets 2015transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. Visualization Elsevier Statistical downscaling Elsevier Climate modeling Elsevier Big data Elsevier Hostetler, S.W. oth Enthalten in Elsevier Science Zhu, Ting-Lei ELSEVIER Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation 2014 Amsterdam [u.a.] (DE-627)ELV017414318 volume:68 year:2015 pages:175-180 extent:6 https://doi.org/10.1016/j.envsoft.2015.02.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 44.89 Endokrinologie VZ AR 68 2015 175-180 6 045F 690 |
language |
English |
source |
Enthalten in Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation Amsterdam [u.a.] volume:68 year:2015 pages:175-180 extent:6 |
sourceStr |
Enthalten in Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation Amsterdam [u.a.] volume:68 year:2015 pages:175-180 extent:6 |
format_phy_str_mv |
Article |
bklname |
Endokrinologie |
institution |
findex.gbv.de |
topic_facet |
Visualization Statistical downscaling Climate modeling Big data |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |
authorswithroles_txt_mv |
Alder, J.R. @@aut@@ Hostetler, S.W. @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV017414318 |
dewey-sort |
3690 |
id |
ELV034351590 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV034351590</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625200656.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.envsoft.2015.02.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000194A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV034351590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1364-8152(15)00065-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.89</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alder, J.R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Web based visualization of large climate data sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Visualization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistical downscaling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Climate modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hostetler, S.W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhu, Ting-Lei ELSEVIER</subfield><subfield code="t">Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV017414318</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:68</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:175-180</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.envsoft.2015.02.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.89</subfield><subfield code="j">Endokrinologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">68</subfield><subfield code="j">2015</subfield><subfield code="h">175-180</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
author |
Alder, J.R. |
spellingShingle |
Alder, J.R. ddc 690 ddc 004 ddc 520 ddc 620 ddc 610 bkl 44.89 Elsevier Visualization Elsevier Statistical downscaling Elsevier Climate modeling Elsevier Big data Web based visualization of large climate data sets |
authorStr |
Alder, J.R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV017414318 |
format |
electronic Article |
dewey-ones |
690 - Buildings 004 - Data processing & computer science 520 - Astronomy & allied sciences 620 - Engineering & allied operations 610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl Web based visualization of large climate data sets Visualization Elsevier Statistical downscaling Elsevier Climate modeling Elsevier Big data Elsevier |
topic |
ddc 690 ddc 004 ddc 520 ddc 620 ddc 610 bkl 44.89 Elsevier Visualization Elsevier Statistical downscaling Elsevier Climate modeling Elsevier Big data |
topic_unstemmed |
ddc 690 ddc 004 ddc 520 ddc 620 ddc 610 bkl 44.89 Elsevier Visualization Elsevier Statistical downscaling Elsevier Climate modeling Elsevier Big data |
topic_browse |
ddc 690 ddc 004 ddc 520 ddc 620 ddc 610 bkl 44.89 Elsevier Visualization Elsevier Statistical downscaling Elsevier Climate modeling Elsevier Big data |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s h sh |
hierarchy_parent_title |
Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |
hierarchy_parent_id |
ELV017414318 |
dewey-tens |
690 - Building & construction 000 - Computer science, knowledge & systems 520 - Astronomy 620 - Engineering 610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV017414318 |
title |
Web based visualization of large climate data sets |
ctrlnum |
(DE-627)ELV034351590 (ELSEVIER)S1364-8152(15)00065-1 |
title_full |
Web based visualization of large climate data sets |
author_sort |
Alder, J.R. |
journal |
Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |
journalStr |
Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
175 |
author_browse |
Alder, J.R. |
container_volume |
68 |
physical |
6 |
class |
690 004 690 DE-600 004 DE-600 520 VZ 620 VZ 610 570 VZ 44.89 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Alder, J.R. |
doi_str_mv |
10.1016/j.envsoft.2015.02.016 |
dewey-full |
690 004 520 620 610 570 |
title_sort |
web based visualization of large climate data sets |
title_auth |
Web based visualization of large climate data sets |
abstract |
We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. |
abstractGer |
We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. |
abstract_unstemmed |
We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 |
title_short |
Web based visualization of large climate data sets |
url |
https://doi.org/10.1016/j.envsoft.2015.02.016 |
remote_bool |
true |
author2 |
Hostetler, S.W. |
author2Str |
Hostetler, S.W. |
ppnlink |
ELV017414318 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.envsoft.2015.02.016 |
up_date |
2024-07-06T20:54:28.829Z |
_version_ |
1803864526112686080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV034351590</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625200656.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.envsoft.2015.02.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000194A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV034351590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1364-8152(15)00065-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.89</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alder, J.R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Web based visualization of large climate data sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Visualization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistical downscaling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Climate modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hostetler, S.W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhu, Ting-Lei ELSEVIER</subfield><subfield code="t">Long term evolution of Molniya orbit under the effect of Earth’s non-spherical gravitational perturbation</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV017414318</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:68</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:175-180</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.envsoft.2015.02.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.89</subfield><subfield code="j">Endokrinologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">68</subfield><subfield code="j">2015</subfield><subfield code="h">175-180</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
score |
7.4006615 |