Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation
Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function...
Ausführliche Beschreibung
Autor*in: |
Nath, Palash [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
7 |
---|
Übergeordnetes Werk: |
Enthalten in: Can digital technologies improve health? - The Lancet ELSEVIER, 2021, physics, chemistry and materials science, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2015 ; number:6 ; pages:691-697 ; extent:7 |
Links: |
---|
DOI / URN: |
10.1016/j.cap.2015.03.011 |
---|
Katalog-ID: |
ELV034458727 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV034458727 | ||
003 | DE-627 | ||
005 | 20230625201001.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cap.2015.03.011 |2 doi | |
028 | 5 | 2 | |a GBVA2015007000001.pica |
035 | |a (DE-627)ELV034458727 | ||
035 | |a (ELSEVIER)S1567-1739(15)00088-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
100 | 1 | |a Nath, Palash |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation |
264 | 1 | |c 2015transfer abstract | |
300 | |a 7 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. | ||
520 | |a Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. | ||
650 | 7 | |a Bilayer graphene |2 Elsevier | |
650 | 7 | |a Dielectric function |2 Elsevier | |
650 | 7 | |a Density functional theory |2 Elsevier | |
650 | 7 | |a Optical property |2 Elsevier | |
700 | 1 | |a Sanyal, D. |4 oth | |
700 | 1 | |a Jana, Debnarayan |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a The Lancet ELSEVIER |t Can digital technologies improve health? |d 2021 |d physics, chemistry and materials science |g Amsterdam [u.a.] |w (DE-627)ELV006885837 |
773 | 1 | 8 | |g volume:15 |g year:2015 |g number:6 |g pages:691-697 |g extent:7 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.cap.2015.03.011 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
951 | |a AR | ||
952 | |d 15 |j 2015 |e 6 |h 691-697 |g 7 | ||
953 | |2 045F |a 530 |
author_variant |
p n pn |
---|---|
matchkey_str |
nathpalashsanyaldjanadebnarayan:2015----:bntoacltoootclrprisfatceblyrrpeei |
hierarchy_sort_str |
2015transfer abstract |
publishDate |
2015 |
allfields |
10.1016/j.cap.2015.03.011 doi GBVA2015007000001.pica (DE-627)ELV034458727 (ELSEVIER)S1567-1739(15)00088-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 Nath, Palash verfasserin aut Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation 2015transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. Bilayer graphene Elsevier Dielectric function Elsevier Density functional theory Elsevier Optical property Elsevier Sanyal, D. oth Jana, Debnarayan oth Enthalten in Elsevier Science The Lancet ELSEVIER Can digital technologies improve health? 2021 physics, chemistry and materials science Amsterdam [u.a.] (DE-627)ELV006885837 volume:15 year:2015 number:6 pages:691-697 extent:7 https://doi.org/10.1016/j.cap.2015.03.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 15 2015 6 691-697 7 045F 530 |
spelling |
10.1016/j.cap.2015.03.011 doi GBVA2015007000001.pica (DE-627)ELV034458727 (ELSEVIER)S1567-1739(15)00088-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 Nath, Palash verfasserin aut Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation 2015transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. Bilayer graphene Elsevier Dielectric function Elsevier Density functional theory Elsevier Optical property Elsevier Sanyal, D. oth Jana, Debnarayan oth Enthalten in Elsevier Science The Lancet ELSEVIER Can digital technologies improve health? 2021 physics, chemistry and materials science Amsterdam [u.a.] (DE-627)ELV006885837 volume:15 year:2015 number:6 pages:691-697 extent:7 https://doi.org/10.1016/j.cap.2015.03.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 15 2015 6 691-697 7 045F 530 |
allfields_unstemmed |
10.1016/j.cap.2015.03.011 doi GBVA2015007000001.pica (DE-627)ELV034458727 (ELSEVIER)S1567-1739(15)00088-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 Nath, Palash verfasserin aut Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation 2015transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. Bilayer graphene Elsevier Dielectric function Elsevier Density functional theory Elsevier Optical property Elsevier Sanyal, D. oth Jana, Debnarayan oth Enthalten in Elsevier Science The Lancet ELSEVIER Can digital technologies improve health? 2021 physics, chemistry and materials science Amsterdam [u.a.] (DE-627)ELV006885837 volume:15 year:2015 number:6 pages:691-697 extent:7 https://doi.org/10.1016/j.cap.2015.03.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 15 2015 6 691-697 7 045F 530 |
allfieldsGer |
10.1016/j.cap.2015.03.011 doi GBVA2015007000001.pica (DE-627)ELV034458727 (ELSEVIER)S1567-1739(15)00088-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 Nath, Palash verfasserin aut Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation 2015transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. Bilayer graphene Elsevier Dielectric function Elsevier Density functional theory Elsevier Optical property Elsevier Sanyal, D. oth Jana, Debnarayan oth Enthalten in Elsevier Science The Lancet ELSEVIER Can digital technologies improve health? 2021 physics, chemistry and materials science Amsterdam [u.a.] (DE-627)ELV006885837 volume:15 year:2015 number:6 pages:691-697 extent:7 https://doi.org/10.1016/j.cap.2015.03.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 15 2015 6 691-697 7 045F 530 |
allfieldsSound |
10.1016/j.cap.2015.03.011 doi GBVA2015007000001.pica (DE-627)ELV034458727 (ELSEVIER)S1567-1739(15)00088-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 Nath, Palash verfasserin aut Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation 2015transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. Bilayer graphene Elsevier Dielectric function Elsevier Density functional theory Elsevier Optical property Elsevier Sanyal, D. oth Jana, Debnarayan oth Enthalten in Elsevier Science The Lancet ELSEVIER Can digital technologies improve health? 2021 physics, chemistry and materials science Amsterdam [u.a.] (DE-627)ELV006885837 volume:15 year:2015 number:6 pages:691-697 extent:7 https://doi.org/10.1016/j.cap.2015.03.011 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 15 2015 6 691-697 7 045F 530 |
language |
English |
source |
Enthalten in Can digital technologies improve health? Amsterdam [u.a.] volume:15 year:2015 number:6 pages:691-697 extent:7 |
sourceStr |
Enthalten in Can digital technologies improve health? Amsterdam [u.a.] volume:15 year:2015 number:6 pages:691-697 extent:7 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bilayer graphene Dielectric function Density functional theory Optical property |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Can digital technologies improve health? |
authorswithroles_txt_mv |
Nath, Palash @@aut@@ Sanyal, D. @@oth@@ Jana, Debnarayan @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV006885837 |
dewey-sort |
3530 |
id |
ELV034458727 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV034458727</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625201001.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cap.2015.03.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015007000001.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV034458727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1567-1739(15)00088-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nath, Palash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bilayer graphene</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dielectric function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Density functional theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optical property</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanyal, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jana, Debnarayan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">The Lancet ELSEVIER</subfield><subfield code="t">Can digital technologies improve health?</subfield><subfield code="d">2021</subfield><subfield code="d">physics, chemistry and materials science</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006885837</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:691-697</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cap.2015.03.011</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="h">691-697</subfield><subfield code="g">7</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Nath, Palash |
spellingShingle |
Nath, Palash ddc 530 Elsevier Bilayer graphene Elsevier Dielectric function Elsevier Density functional theory Elsevier Optical property Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation |
authorStr |
Nath, Palash |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006885837 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation Bilayer graphene Elsevier Dielectric function Elsevier Density functional theory Elsevier Optical property Elsevier |
topic |
ddc 530 Elsevier Bilayer graphene Elsevier Dielectric function Elsevier Density functional theory Elsevier Optical property |
topic_unstemmed |
ddc 530 Elsevier Bilayer graphene Elsevier Dielectric function Elsevier Density functional theory Elsevier Optical property |
topic_browse |
ddc 530 Elsevier Bilayer graphene Elsevier Dielectric function Elsevier Density functional theory Elsevier Optical property |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d s ds d j dj |
hierarchy_parent_title |
Can digital technologies improve health? |
hierarchy_parent_id |
ELV006885837 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Can digital technologies improve health? |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006885837 |
title |
Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation |
ctrlnum |
(DE-627)ELV034458727 (ELSEVIER)S1567-1739(15)00088-7 |
title_full |
Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation |
author_sort |
Nath, Palash |
journal |
Can digital technologies improve health? |
journalStr |
Can digital technologies improve health? |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
691 |
author_browse |
Nath, Palash |
container_volume |
15 |
physical |
7 |
class |
530 530 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Nath, Palash |
doi_str_mv |
10.1016/j.cap.2015.03.011 |
dewey-full |
530 |
title_sort |
ab-initio calculation of optical properties of aa-stacked bilayer graphene with tunable layer separation |
title_auth |
Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation |
abstract |
Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. |
abstractGer |
Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. |
abstract_unstemmed |
Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
6 |
title_short |
Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation |
url |
https://doi.org/10.1016/j.cap.2015.03.011 |
remote_bool |
true |
author2 |
Sanyal, D. Jana, Debnarayan |
author2Str |
Sanyal, D. Jana, Debnarayan |
ppnlink |
ELV006885837 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.cap.2015.03.011 |
up_date |
2024-07-06T21:10:50.616Z |
_version_ |
1803865555590971392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV034458727</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625201001.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cap.2015.03.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015007000001.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV034458727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1567-1739(15)00088-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nath, Palash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ab-initio calculation of optical properties of AA-stacked bilayer graphene with tunable layer separation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bilayer graphene</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dielectric function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Density functional theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optical property</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanyal, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jana, Debnarayan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">The Lancet ELSEVIER</subfield><subfield code="t">Can digital technologies improve health?</subfield><subfield code="d">2021</subfield><subfield code="d">physics, chemistry and materials science</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006885837</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:691-697</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cap.2015.03.011</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="h">691-697</subfield><subfield code="g">7</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.402194 |