Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid
In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/...
Ausführliche Beschreibung
Autor*in: |
Bhattacharjee, Jayanta K. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
4 |
---|
Übergeordnetes Werk: |
Enthalten in: Transient response and failure of medium density fibreboard panels subjected to air-blast loading - Langdon, G.S. ELSEVIER, 2021, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:379 ; year:2015 ; number:7 ; day:20 ; month:03 ; pages:696-699 ; extent:4 |
Links: |
---|
DOI / URN: |
10.1016/j.physleta.2014.12.035 |
---|
Katalog-ID: |
ELV034585532 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV034585532 | ||
003 | DE-627 | ||
005 | 20230625201304.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.physleta.2014.12.035 |2 doi | |
028 | 5 | 2 | |a GBVA2015012000013.pica |
035 | |a (DE-627)ELV034585532 | ||
035 | |a (ELSEVIER)S0375-9601(14)01275-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 51.75 |2 bkl | ||
100 | 1 | |a Bhattacharjee, Jayanta K. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid |
264 | 1 | |c 2015transfer abstract | |
300 | |a 4 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. | ||
520 | |a In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. | ||
650 | 7 | |a Bolgiano–Obukhov scaling |2 Elsevier | |
650 | 7 | |a Turbulence in stratified fluids |2 Elsevier | |
650 | 7 | |a Kolmogorov theory |2 Elsevier | |
650 | 7 | |a Corrections to scaling |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n North-Holland Publ |a Langdon, G.S. ELSEVIER |t Transient response and failure of medium density fibreboard panels subjected to air-blast loading |d 2021 |g Amsterdam |w (DE-627)ELV006407811 |
773 | 1 | 8 | |g volume:379 |g year:2015 |g number:7 |g day:20 |g month:03 |g pages:696-699 |g extent:4 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.physleta.2014.12.035 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 51.75 |j Verbundwerkstoffe |j Schichtstoffe |q VZ |
951 | |a AR | ||
952 | |d 379 |j 2015 |e 7 |b 20 |c 0320 |h 696-699 |g 4 | ||
953 | |2 045F |a 530 |
author_variant |
j k b jk jkb |
---|---|
matchkey_str |
bhattacharjeejayantak:2015----:omgrvruetoteclnotenrypcrm |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
51.75 |
publishDate |
2015 |
allfields |
10.1016/j.physleta.2014.12.035 doi GBVA2015012000013.pica (DE-627)ELV034585532 (ELSEVIER)S0375-9601(14)01275-4 DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 51.75 bkl Bhattacharjee, Jayanta K. verfasserin aut Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid 2015transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. Bolgiano–Obukhov scaling Elsevier Turbulence in stratified fluids Elsevier Kolmogorov theory Elsevier Corrections to scaling Elsevier Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:379 year:2015 number:7 day:20 month:03 pages:696-699 extent:4 https://doi.org/10.1016/j.physleta.2014.12.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 379 2015 7 20 0320 696-699 4 045F 530 |
spelling |
10.1016/j.physleta.2014.12.035 doi GBVA2015012000013.pica (DE-627)ELV034585532 (ELSEVIER)S0375-9601(14)01275-4 DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 51.75 bkl Bhattacharjee, Jayanta K. verfasserin aut Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid 2015transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. Bolgiano–Obukhov scaling Elsevier Turbulence in stratified fluids Elsevier Kolmogorov theory Elsevier Corrections to scaling Elsevier Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:379 year:2015 number:7 day:20 month:03 pages:696-699 extent:4 https://doi.org/10.1016/j.physleta.2014.12.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 379 2015 7 20 0320 696-699 4 045F 530 |
allfields_unstemmed |
10.1016/j.physleta.2014.12.035 doi GBVA2015012000013.pica (DE-627)ELV034585532 (ELSEVIER)S0375-9601(14)01275-4 DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 51.75 bkl Bhattacharjee, Jayanta K. verfasserin aut Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid 2015transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. Bolgiano–Obukhov scaling Elsevier Turbulence in stratified fluids Elsevier Kolmogorov theory Elsevier Corrections to scaling Elsevier Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:379 year:2015 number:7 day:20 month:03 pages:696-699 extent:4 https://doi.org/10.1016/j.physleta.2014.12.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 379 2015 7 20 0320 696-699 4 045F 530 |
allfieldsGer |
10.1016/j.physleta.2014.12.035 doi GBVA2015012000013.pica (DE-627)ELV034585532 (ELSEVIER)S0375-9601(14)01275-4 DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 51.75 bkl Bhattacharjee, Jayanta K. verfasserin aut Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid 2015transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. Bolgiano–Obukhov scaling Elsevier Turbulence in stratified fluids Elsevier Kolmogorov theory Elsevier Corrections to scaling Elsevier Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:379 year:2015 number:7 day:20 month:03 pages:696-699 extent:4 https://doi.org/10.1016/j.physleta.2014.12.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 379 2015 7 20 0320 696-699 4 045F 530 |
allfieldsSound |
10.1016/j.physleta.2014.12.035 doi GBVA2015012000013.pica (DE-627)ELV034585532 (ELSEVIER)S0375-9601(14)01275-4 DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 51.75 bkl Bhattacharjee, Jayanta K. verfasserin aut Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid 2015transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. Bolgiano–Obukhov scaling Elsevier Turbulence in stratified fluids Elsevier Kolmogorov theory Elsevier Corrections to scaling Elsevier Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:379 year:2015 number:7 day:20 month:03 pages:696-699 extent:4 https://doi.org/10.1016/j.physleta.2014.12.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 379 2015 7 20 0320 696-699 4 045F 530 |
language |
English |
source |
Enthalten in Transient response and failure of medium density fibreboard panels subjected to air-blast loading Amsterdam volume:379 year:2015 number:7 day:20 month:03 pages:696-699 extent:4 |
sourceStr |
Enthalten in Transient response and failure of medium density fibreboard panels subjected to air-blast loading Amsterdam volume:379 year:2015 number:7 day:20 month:03 pages:696-699 extent:4 |
format_phy_str_mv |
Article |
bklname |
Verbundwerkstoffe Schichtstoffe |
institution |
findex.gbv.de |
topic_facet |
Bolgiano–Obukhov scaling Turbulence in stratified fluids Kolmogorov theory Corrections to scaling |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
authorswithroles_txt_mv |
Bhattacharjee, Jayanta K. @@aut@@ |
publishDateDaySort_date |
2015-01-20T00:00:00Z |
hierarchy_top_id |
ELV006407811 |
dewey-sort |
3530 |
id |
ELV034585532 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV034585532</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625201304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physleta.2014.12.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015012000013.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV034585532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0375-9601(14)01275-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhattacharjee, Jayanta K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bolgiano–Obukhov scaling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Turbulence in stratified fluids</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kolmogorov theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corrections to scaling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ</subfield><subfield code="a">Langdon, G.S. ELSEVIER</subfield><subfield code="t">Transient response and failure of medium density fibreboard panels subjected to air-blast loading</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006407811</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:379</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">day:20</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:696-699</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.physleta.2014.12.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.75</subfield><subfield code="j">Verbundwerkstoffe</subfield><subfield code="j">Schichtstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">379</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="b">20</subfield><subfield code="c">0320</subfield><subfield code="h">696-699</subfield><subfield code="g">4</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Bhattacharjee, Jayanta K. |
spellingShingle |
Bhattacharjee, Jayanta K. ddc 530 ddc 670 bkl 51.75 Elsevier Bolgiano–Obukhov scaling Elsevier Turbulence in stratified fluids Elsevier Kolmogorov theory Elsevier Corrections to scaling Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid |
authorStr |
Bhattacharjee, Jayanta K. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006407811 |
format |
electronic Article |
dewey-ones |
530 - Physics 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 670 VZ 51.75 bkl Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid Bolgiano–Obukhov scaling Elsevier Turbulence in stratified fluids Elsevier Kolmogorov theory Elsevier Corrections to scaling Elsevier |
topic |
ddc 530 ddc 670 bkl 51.75 Elsevier Bolgiano–Obukhov scaling Elsevier Turbulence in stratified fluids Elsevier Kolmogorov theory Elsevier Corrections to scaling |
topic_unstemmed |
ddc 530 ddc 670 bkl 51.75 Elsevier Bolgiano–Obukhov scaling Elsevier Turbulence in stratified fluids Elsevier Kolmogorov theory Elsevier Corrections to scaling |
topic_browse |
ddc 530 ddc 670 bkl 51.75 Elsevier Bolgiano–Obukhov scaling Elsevier Turbulence in stratified fluids Elsevier Kolmogorov theory Elsevier Corrections to scaling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
hierarchy_parent_id |
ELV006407811 |
dewey-tens |
530 - Physics 670 - Manufacturing |
hierarchy_top_title |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006407811 |
title |
Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid |
ctrlnum |
(DE-627)ELV034585532 (ELSEVIER)S0375-9601(14)01275-4 |
title_full |
Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid |
author_sort |
Bhattacharjee, Jayanta K. |
journal |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
journalStr |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
696 |
author_browse |
Bhattacharjee, Jayanta K. |
container_volume |
379 |
physical |
4 |
class |
530 530 DE-600 670 VZ 51.75 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bhattacharjee, Jayanta K. |
doi_str_mv |
10.1016/j.physleta.2014.12.035 |
dewey-full |
530 670 |
title_sort |
kolmogorov argument for the scaling of the energy spectrum in a stratified fluid |
title_auth |
Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid |
abstract |
In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. |
abstractGer |
In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. |
abstract_unstemmed |
In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
7 |
title_short |
Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid |
url |
https://doi.org/10.1016/j.physleta.2014.12.035 |
remote_bool |
true |
ppnlink |
ELV006407811 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.physleta.2014.12.035 |
up_date |
2024-07-06T21:29:04.838Z |
_version_ |
1803866702966947840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV034585532</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625201304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physleta.2014.12.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015012000013.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV034585532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0375-9601(14)01275-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhattacharjee, Jayanta K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bolgiano–Obukhov scaling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Turbulence in stratified fluids</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kolmogorov theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corrections to scaling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ</subfield><subfield code="a">Langdon, G.S. ELSEVIER</subfield><subfield code="t">Transient response and failure of medium density fibreboard panels subjected to air-blast loading</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006407811</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:379</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">day:20</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:696-699</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.physleta.2014.12.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.75</subfield><subfield code="j">Verbundwerkstoffe</subfield><subfield code="j">Schichtstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">379</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="b">20</subfield><subfield code="c">0320</subfield><subfield code="h">696-699</subfield><subfield code="g">4</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.401614 |