Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials
In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Usin...
Ausführliche Beschreibung
Autor*in: |
Zhou, Long-Qiao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation - Malki, Mounia ELSEVIER, 2018, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:77 ; year:2015 ; pages:223-231 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.ijnonlinmec.2015.08.008 |
---|
Katalog-ID: |
ELV034914323 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV034914323 | ||
003 | DE-627 | ||
005 | 20230624015827.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijnonlinmec.2015.08.008 |2 doi | |
028 | 5 | 2 | |a GBVA2015021000030.pica |
035 | |a (DE-627)ELV034914323 | ||
035 | |a (ELSEVIER)S0020-7462(15)00147-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 51.32 |2 bkl | ||
100 | 1 | |a Zhou, Long-Qiao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials |
264 | 1 | |c 2015 | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained. | ||
650 | 7 | |a Invariant solutions |2 Elsevier | |
650 | 7 | |a Admitted Lie groups |2 Elsevier | |
650 | 7 | |a Integro-differential equations |2 Elsevier | |
650 | 7 | |a Group classification |2 Elsevier | |
650 | 7 | |a Viscoelastic materials |2 Elsevier | |
700 | 1 | |a Meleshko, Sergey V. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Malki, Mounia ELSEVIER |t Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation |d 2018 |g Amsterdam |w (DE-627)ELV001315986 |
773 | 1 | 8 | |g volume:77 |g year:2015 |g pages:223-231 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijnonlinmec.2015.08.008 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 51.32 |j Werkstoffmechanik |q VZ |
951 | |a AR | ||
952 | |d 77 |j 2015 |h 223-231 |g 9 | ||
953 | |2 045F |a 530 |
author_variant |
l q z lqz |
---|---|
matchkey_str |
zhoulongqiaomeleshkosergeyv:2015----:ruaayioitgoifrnilqaindsrbnsrsrlxtobhvoooei |
hierarchy_sort_str |
2015 |
bklnumber |
51.32 |
publishDate |
2015 |
allfields |
10.1016/j.ijnonlinmec.2015.08.008 doi GBVA2015021000030.pica (DE-627)ELV034914323 (ELSEVIER)S0020-7462(15)00147-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 530 VZ 51.32 bkl Zhou, Long-Qiao verfasserin aut Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials 2015 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained. Invariant solutions Elsevier Admitted Lie groups Elsevier Integro-differential equations Elsevier Group classification Elsevier Viscoelastic materials Elsevier Meleshko, Sergey V. oth Enthalten in Elsevier Science Malki, Mounia ELSEVIER Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation 2018 Amsterdam (DE-627)ELV001315986 volume:77 year:2015 pages:223-231 extent:9 https://doi.org/10.1016/j.ijnonlinmec.2015.08.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.32 Werkstoffmechanik VZ AR 77 2015 223-231 9 045F 530 |
spelling |
10.1016/j.ijnonlinmec.2015.08.008 doi GBVA2015021000030.pica (DE-627)ELV034914323 (ELSEVIER)S0020-7462(15)00147-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 530 VZ 51.32 bkl Zhou, Long-Qiao verfasserin aut Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials 2015 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained. Invariant solutions Elsevier Admitted Lie groups Elsevier Integro-differential equations Elsevier Group classification Elsevier Viscoelastic materials Elsevier Meleshko, Sergey V. oth Enthalten in Elsevier Science Malki, Mounia ELSEVIER Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation 2018 Amsterdam (DE-627)ELV001315986 volume:77 year:2015 pages:223-231 extent:9 https://doi.org/10.1016/j.ijnonlinmec.2015.08.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.32 Werkstoffmechanik VZ AR 77 2015 223-231 9 045F 530 |
allfields_unstemmed |
10.1016/j.ijnonlinmec.2015.08.008 doi GBVA2015021000030.pica (DE-627)ELV034914323 (ELSEVIER)S0020-7462(15)00147-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 530 VZ 51.32 bkl Zhou, Long-Qiao verfasserin aut Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials 2015 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained. Invariant solutions Elsevier Admitted Lie groups Elsevier Integro-differential equations Elsevier Group classification Elsevier Viscoelastic materials Elsevier Meleshko, Sergey V. oth Enthalten in Elsevier Science Malki, Mounia ELSEVIER Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation 2018 Amsterdam (DE-627)ELV001315986 volume:77 year:2015 pages:223-231 extent:9 https://doi.org/10.1016/j.ijnonlinmec.2015.08.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.32 Werkstoffmechanik VZ AR 77 2015 223-231 9 045F 530 |
allfieldsGer |
10.1016/j.ijnonlinmec.2015.08.008 doi GBVA2015021000030.pica (DE-627)ELV034914323 (ELSEVIER)S0020-7462(15)00147-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 530 VZ 51.32 bkl Zhou, Long-Qiao verfasserin aut Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials 2015 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained. Invariant solutions Elsevier Admitted Lie groups Elsevier Integro-differential equations Elsevier Group classification Elsevier Viscoelastic materials Elsevier Meleshko, Sergey V. oth Enthalten in Elsevier Science Malki, Mounia ELSEVIER Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation 2018 Amsterdam (DE-627)ELV001315986 volume:77 year:2015 pages:223-231 extent:9 https://doi.org/10.1016/j.ijnonlinmec.2015.08.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.32 Werkstoffmechanik VZ AR 77 2015 223-231 9 045F 530 |
allfieldsSound |
10.1016/j.ijnonlinmec.2015.08.008 doi GBVA2015021000030.pica (DE-627)ELV034914323 (ELSEVIER)S0020-7462(15)00147-X DE-627 ger DE-627 rakwb eng 530 530 DE-600 530 VZ 51.32 bkl Zhou, Long-Qiao verfasserin aut Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials 2015 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained. Invariant solutions Elsevier Admitted Lie groups Elsevier Integro-differential equations Elsevier Group classification Elsevier Viscoelastic materials Elsevier Meleshko, Sergey V. oth Enthalten in Elsevier Science Malki, Mounia ELSEVIER Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation 2018 Amsterdam (DE-627)ELV001315986 volume:77 year:2015 pages:223-231 extent:9 https://doi.org/10.1016/j.ijnonlinmec.2015.08.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.32 Werkstoffmechanik VZ AR 77 2015 223-231 9 045F 530 |
language |
English |
source |
Enthalten in Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation Amsterdam volume:77 year:2015 pages:223-231 extent:9 |
sourceStr |
Enthalten in Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation Amsterdam volume:77 year:2015 pages:223-231 extent:9 |
format_phy_str_mv |
Article |
bklname |
Werkstoffmechanik |
institution |
findex.gbv.de |
topic_facet |
Invariant solutions Admitted Lie groups Integro-differential equations Group classification Viscoelastic materials |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation |
authorswithroles_txt_mv |
Zhou, Long-Qiao @@aut@@ Meleshko, Sergey V. @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV001315986 |
dewey-sort |
3530 |
id |
ELV034914323 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV034914323</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624015827.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijnonlinmec.2015.08.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015021000030.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV034914323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7462(15)00147-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Long-Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariant solutions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Admitted Lie groups</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integro-differential equations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group classification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Viscoelastic materials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meleshko, Sergey V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Malki, Mounia ELSEVIER</subfield><subfield code="t">Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV001315986</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:223-231</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijnonlinmec.2015.08.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2015</subfield><subfield code="h">223-231</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Zhou, Long-Qiao |
spellingShingle |
Zhou, Long-Qiao ddc 530 bkl 51.32 Elsevier Invariant solutions Elsevier Admitted Lie groups Elsevier Integro-differential equations Elsevier Group classification Elsevier Viscoelastic materials Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials |
authorStr |
Zhou, Long-Qiao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001315986 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 530 VZ 51.32 bkl Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials Invariant solutions Elsevier Admitted Lie groups Elsevier Integro-differential equations Elsevier Group classification Elsevier Viscoelastic materials Elsevier |
topic |
ddc 530 bkl 51.32 Elsevier Invariant solutions Elsevier Admitted Lie groups Elsevier Integro-differential equations Elsevier Group classification Elsevier Viscoelastic materials |
topic_unstemmed |
ddc 530 bkl 51.32 Elsevier Invariant solutions Elsevier Admitted Lie groups Elsevier Integro-differential equations Elsevier Group classification Elsevier Viscoelastic materials |
topic_browse |
ddc 530 bkl 51.32 Elsevier Invariant solutions Elsevier Admitted Lie groups Elsevier Integro-differential equations Elsevier Group classification Elsevier Viscoelastic materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s v m sv svm |
hierarchy_parent_title |
Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation |
hierarchy_parent_id |
ELV001315986 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001315986 |
title |
Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials |
ctrlnum |
(DE-627)ELV034914323 (ELSEVIER)S0020-7462(15)00147-X |
title_full |
Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials |
author_sort |
Zhou, Long-Qiao |
journal |
Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation |
journalStr |
Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
223 |
author_browse |
Zhou, Long-Qiao |
container_volume |
77 |
physical |
9 |
class |
530 530 DE-600 530 VZ 51.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Long-Qiao |
doi_str_mv |
10.1016/j.ijnonlinmec.2015.08.008 |
dewey-full |
530 |
title_sort |
group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials |
title_auth |
Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials |
abstract |
In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained. |
abstractGer |
In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained. |
abstract_unstemmed |
In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials |
url |
https://doi.org/10.1016/j.ijnonlinmec.2015.08.008 |
remote_bool |
true |
author2 |
Meleshko, Sergey V. |
author2Str |
Meleshko, Sergey V. |
ppnlink |
ELV001315986 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.ijnonlinmec.2015.08.008 |
up_date |
2024-07-06T22:19:06.434Z |
_version_ |
1803869850367426561 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV034914323</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624015827.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijnonlinmec.2015.08.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015021000030.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV034914323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7462(15)00147-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Long-Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariant solutions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Admitted Lie groups</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integro-differential equations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group classification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Viscoelastic materials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meleshko, Sergey V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Malki, Mounia ELSEVIER</subfield><subfield code="t">Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations – Part 2 TL-Orientation</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV001315986</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:223-231</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijnonlinmec.2015.08.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2015</subfield><subfield code="h">223-231</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.4024687 |