Genomics-based strategies for the use of natural variation in the improvement of crop metabolism
• We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detai...
Ausführliche Beschreibung
Autor*in: |
Scossa, Federico [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Umfang: |
18 |
---|
Übergeordnetes Werk: |
Enthalten in: Privacy risk assessment and privacy-preserving data monitoring - Silva, Paulo ELSEVIER, 2022, an international journal of experimental plant biology, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:242 ; year:2016 ; pages:47-64 ; extent:18 |
Links: |
---|
DOI / URN: |
10.1016/j.plantsci.2015.05.021 |
---|
Katalog-ID: |
ELV035149906 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV035149906 | ||
003 | DE-627 | ||
005 | 20230624021010.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.plantsci.2015.05.021 |2 doi | |
028 | 5 | 2 | |a GBVA2016006000002.pica |
035 | |a (DE-627)ELV035149906 | ||
035 | |a (ELSEVIER)S0168-9452(15)00166-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 580 |a 570 | |
082 | 0 | 4 | |a 580 |q DE-600 |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Scossa, Federico |e verfasserin |4 aut | |
245 | 1 | 0 | |a Genomics-based strategies for the use of natural variation in the improvement of crop metabolism |
264 | 1 | |c 2016 | |
300 | |a 18 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detailed. • The advances afforded by multiple plant genomes are highlighted. | ||
650 | 7 | |a WGS |2 Elsevier | |
650 | 7 | |a SV |2 Elsevier | |
650 | 7 | |a PAV |2 Elsevier | |
650 | 7 | |a CCD |2 Elsevier | |
650 | 7 | |a CGH |2 Elsevier | |
650 | 7 | |a CNV |2 Elsevier | |
650 | 7 | |a siRNA |2 Elsevier | |
650 | 7 | |a eQTL |2 Elsevier | |
650 | 7 | |a InDels |2 Elsevier | |
650 | 7 | |a RNAseq |2 Elsevier | |
650 | 7 | |a mGWAS |2 Elsevier | |
650 | 7 | |a mQTL |2 Elsevier | |
650 | 7 | |a RIL |2 Elsevier | |
650 | 7 | |a SNP |2 Elsevier | |
650 | 7 | |a TSS |2 Elsevier | |
650 | 7 | |a WGD |2 Elsevier | |
650 | 7 | |a LD |2 Elsevier | |
650 | 7 | |a NAHR |2 Elsevier | |
650 | 7 | |a SNV |2 Elsevier | |
650 | 7 | |a NGS |2 Elsevier | |
650 | 7 | |a CWR |2 Elsevier | |
650 | 7 | |a TCM |2 Elsevier | |
700 | 1 | |a Brotman, Yariv |4 oth | |
700 | 1 | |a de Abreu e Lima, Francisco |4 oth | |
700 | 1 | |a Willmitzer, Lothar |4 oth | |
700 | 1 | |a Nikoloski, Zoran |4 oth | |
700 | 1 | |a Tohge, Takayuki |4 oth | |
700 | 1 | |a Fernie, Alisdair R. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Silva, Paulo ELSEVIER |t Privacy risk assessment and privacy-preserving data monitoring |d 2022 |d an international journal of experimental plant biology |g Amsterdam [u.a.] |w (DE-627)ELV007813538 |
773 | 1 | 8 | |g volume:242 |g year:2016 |g pages:47-64 |g extent:18 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.plantsci.2015.05.021 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q VZ |
951 | |a AR | ||
952 | |d 242 |j 2016 |h 47-64 |g 18 | ||
953 | |2 045F |a 580 |
author_variant |
f s fs |
---|---|
matchkey_str |
scossafedericobrotmanyarivdeabreuelimafr:2016----:eoisaesrtgefrhuefauavrainnhipo |
hierarchy_sort_str |
2016 |
bklnumber |
54.72 |
publishDate |
2016 |
allfields |
10.1016/j.plantsci.2015.05.021 doi GBVA2016006000002.pica (DE-627)ELV035149906 (ELSEVIER)S0168-9452(15)00166-1 DE-627 ger DE-627 rakwb eng 580 570 580 DE-600 570 DE-600 004 VZ 54.72 bkl Scossa, Federico verfasserin aut Genomics-based strategies for the use of natural variation in the improvement of crop metabolism 2016 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detailed. • The advances afforded by multiple plant genomes are highlighted. WGS Elsevier SV Elsevier PAV Elsevier CCD Elsevier CGH Elsevier CNV Elsevier siRNA Elsevier eQTL Elsevier InDels Elsevier RNAseq Elsevier mGWAS Elsevier mQTL Elsevier RIL Elsevier SNP Elsevier TSS Elsevier WGD Elsevier LD Elsevier NAHR Elsevier SNV Elsevier NGS Elsevier CWR Elsevier TCM Elsevier Brotman, Yariv oth de Abreu e Lima, Francisco oth Willmitzer, Lothar oth Nikoloski, Zoran oth Tohge, Takayuki oth Fernie, Alisdair R. oth Enthalten in Elsevier Science Silva, Paulo ELSEVIER Privacy risk assessment and privacy-preserving data monitoring 2022 an international journal of experimental plant biology Amsterdam [u.a.] (DE-627)ELV007813538 volume:242 year:2016 pages:47-64 extent:18 https://doi.org/10.1016/j.plantsci.2015.05.021 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.72 Künstliche Intelligenz VZ AR 242 2016 47-64 18 045F 580 |
spelling |
10.1016/j.plantsci.2015.05.021 doi GBVA2016006000002.pica (DE-627)ELV035149906 (ELSEVIER)S0168-9452(15)00166-1 DE-627 ger DE-627 rakwb eng 580 570 580 DE-600 570 DE-600 004 VZ 54.72 bkl Scossa, Federico verfasserin aut Genomics-based strategies for the use of natural variation in the improvement of crop metabolism 2016 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detailed. • The advances afforded by multiple plant genomes are highlighted. WGS Elsevier SV Elsevier PAV Elsevier CCD Elsevier CGH Elsevier CNV Elsevier siRNA Elsevier eQTL Elsevier InDels Elsevier RNAseq Elsevier mGWAS Elsevier mQTL Elsevier RIL Elsevier SNP Elsevier TSS Elsevier WGD Elsevier LD Elsevier NAHR Elsevier SNV Elsevier NGS Elsevier CWR Elsevier TCM Elsevier Brotman, Yariv oth de Abreu e Lima, Francisco oth Willmitzer, Lothar oth Nikoloski, Zoran oth Tohge, Takayuki oth Fernie, Alisdair R. oth Enthalten in Elsevier Science Silva, Paulo ELSEVIER Privacy risk assessment and privacy-preserving data monitoring 2022 an international journal of experimental plant biology Amsterdam [u.a.] (DE-627)ELV007813538 volume:242 year:2016 pages:47-64 extent:18 https://doi.org/10.1016/j.plantsci.2015.05.021 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.72 Künstliche Intelligenz VZ AR 242 2016 47-64 18 045F 580 |
allfields_unstemmed |
10.1016/j.plantsci.2015.05.021 doi GBVA2016006000002.pica (DE-627)ELV035149906 (ELSEVIER)S0168-9452(15)00166-1 DE-627 ger DE-627 rakwb eng 580 570 580 DE-600 570 DE-600 004 VZ 54.72 bkl Scossa, Federico verfasserin aut Genomics-based strategies for the use of natural variation in the improvement of crop metabolism 2016 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detailed. • The advances afforded by multiple plant genomes are highlighted. WGS Elsevier SV Elsevier PAV Elsevier CCD Elsevier CGH Elsevier CNV Elsevier siRNA Elsevier eQTL Elsevier InDels Elsevier RNAseq Elsevier mGWAS Elsevier mQTL Elsevier RIL Elsevier SNP Elsevier TSS Elsevier WGD Elsevier LD Elsevier NAHR Elsevier SNV Elsevier NGS Elsevier CWR Elsevier TCM Elsevier Brotman, Yariv oth de Abreu e Lima, Francisco oth Willmitzer, Lothar oth Nikoloski, Zoran oth Tohge, Takayuki oth Fernie, Alisdair R. oth Enthalten in Elsevier Science Silva, Paulo ELSEVIER Privacy risk assessment and privacy-preserving data monitoring 2022 an international journal of experimental plant biology Amsterdam [u.a.] (DE-627)ELV007813538 volume:242 year:2016 pages:47-64 extent:18 https://doi.org/10.1016/j.plantsci.2015.05.021 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.72 Künstliche Intelligenz VZ AR 242 2016 47-64 18 045F 580 |
allfieldsGer |
10.1016/j.plantsci.2015.05.021 doi GBVA2016006000002.pica (DE-627)ELV035149906 (ELSEVIER)S0168-9452(15)00166-1 DE-627 ger DE-627 rakwb eng 580 570 580 DE-600 570 DE-600 004 VZ 54.72 bkl Scossa, Federico verfasserin aut Genomics-based strategies for the use of natural variation in the improvement of crop metabolism 2016 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detailed. • The advances afforded by multiple plant genomes are highlighted. WGS Elsevier SV Elsevier PAV Elsevier CCD Elsevier CGH Elsevier CNV Elsevier siRNA Elsevier eQTL Elsevier InDels Elsevier RNAseq Elsevier mGWAS Elsevier mQTL Elsevier RIL Elsevier SNP Elsevier TSS Elsevier WGD Elsevier LD Elsevier NAHR Elsevier SNV Elsevier NGS Elsevier CWR Elsevier TCM Elsevier Brotman, Yariv oth de Abreu e Lima, Francisco oth Willmitzer, Lothar oth Nikoloski, Zoran oth Tohge, Takayuki oth Fernie, Alisdair R. oth Enthalten in Elsevier Science Silva, Paulo ELSEVIER Privacy risk assessment and privacy-preserving data monitoring 2022 an international journal of experimental plant biology Amsterdam [u.a.] (DE-627)ELV007813538 volume:242 year:2016 pages:47-64 extent:18 https://doi.org/10.1016/j.plantsci.2015.05.021 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.72 Künstliche Intelligenz VZ AR 242 2016 47-64 18 045F 580 |
allfieldsSound |
10.1016/j.plantsci.2015.05.021 doi GBVA2016006000002.pica (DE-627)ELV035149906 (ELSEVIER)S0168-9452(15)00166-1 DE-627 ger DE-627 rakwb eng 580 570 580 DE-600 570 DE-600 004 VZ 54.72 bkl Scossa, Federico verfasserin aut Genomics-based strategies for the use of natural variation in the improvement of crop metabolism 2016 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detailed. • The advances afforded by multiple plant genomes are highlighted. WGS Elsevier SV Elsevier PAV Elsevier CCD Elsevier CGH Elsevier CNV Elsevier siRNA Elsevier eQTL Elsevier InDels Elsevier RNAseq Elsevier mGWAS Elsevier mQTL Elsevier RIL Elsevier SNP Elsevier TSS Elsevier WGD Elsevier LD Elsevier NAHR Elsevier SNV Elsevier NGS Elsevier CWR Elsevier TCM Elsevier Brotman, Yariv oth de Abreu e Lima, Francisco oth Willmitzer, Lothar oth Nikoloski, Zoran oth Tohge, Takayuki oth Fernie, Alisdair R. oth Enthalten in Elsevier Science Silva, Paulo ELSEVIER Privacy risk assessment and privacy-preserving data monitoring 2022 an international journal of experimental plant biology Amsterdam [u.a.] (DE-627)ELV007813538 volume:242 year:2016 pages:47-64 extent:18 https://doi.org/10.1016/j.plantsci.2015.05.021 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.72 Künstliche Intelligenz VZ AR 242 2016 47-64 18 045F 580 |
language |
English |
source |
Enthalten in Privacy risk assessment and privacy-preserving data monitoring Amsterdam [u.a.] volume:242 year:2016 pages:47-64 extent:18 |
sourceStr |
Enthalten in Privacy risk assessment and privacy-preserving data monitoring Amsterdam [u.a.] volume:242 year:2016 pages:47-64 extent:18 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
WGS SV PAV CCD CGH CNV siRNA eQTL InDels RNAseq mGWAS mQTL RIL SNP TSS WGD LD NAHR SNV NGS CWR TCM |
dewey-raw |
580 |
isfreeaccess_bool |
false |
container_title |
Privacy risk assessment and privacy-preserving data monitoring |
authorswithroles_txt_mv |
Scossa, Federico @@aut@@ Brotman, Yariv @@oth@@ de Abreu e Lima, Francisco @@oth@@ Willmitzer, Lothar @@oth@@ Nikoloski, Zoran @@oth@@ Tohge, Takayuki @@oth@@ Fernie, Alisdair R. @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV007813538 |
dewey-sort |
3580 |
id |
ELV035149906 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV035149906</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624021010.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.plantsci.2015.05.021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016006000002.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV035149906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9452(15)00166-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">580</subfield><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scossa, Federico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genomics-based strategies for the use of natural variation in the improvement of crop metabolism</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detailed. • The advances afforded by multiple plant genomes are highlighted.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">WGS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PAV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CCD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CGH</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CNV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">siRNA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">eQTL</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">InDels</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RNAseq</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mGWAS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mQTL</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RIL</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SNP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TSS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">WGD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NAHR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SNV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NGS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CWR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TCM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brotman, Yariv</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Abreu e Lima, Francisco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Willmitzer, Lothar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nikoloski, Zoran</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tohge, Takayuki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernie, Alisdair R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Silva, Paulo ELSEVIER</subfield><subfield code="t">Privacy risk assessment and privacy-preserving data monitoring</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal of experimental plant biology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007813538</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:242</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:47-64</subfield><subfield code="g">extent:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.plantsci.2015.05.021</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">242</subfield><subfield code="j">2016</subfield><subfield code="h">47-64</subfield><subfield code="g">18</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">580</subfield></datafield></record></collection>
|
author |
Scossa, Federico |
spellingShingle |
Scossa, Federico ddc 580 ddc 570 ddc 004 bkl 54.72 Elsevier WGS Elsevier SV Elsevier PAV Elsevier CCD Elsevier CGH Elsevier CNV Elsevier siRNA Elsevier eQTL Elsevier InDels Elsevier RNAseq Elsevier mGWAS Elsevier mQTL Elsevier RIL Elsevier SNP Elsevier TSS Elsevier WGD Elsevier LD Elsevier NAHR Elsevier SNV Elsevier NGS Elsevier CWR Elsevier TCM Genomics-based strategies for the use of natural variation in the improvement of crop metabolism |
authorStr |
Scossa, Federico |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007813538 |
format |
electronic Article |
dewey-ones |
580 - Plants (Botany) 570 - Life sciences; biology 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
580 570 580 DE-600 570 DE-600 004 VZ 54.72 bkl Genomics-based strategies for the use of natural variation in the improvement of crop metabolism WGS Elsevier SV Elsevier PAV Elsevier CCD Elsevier CGH Elsevier CNV Elsevier siRNA Elsevier eQTL Elsevier InDels Elsevier RNAseq Elsevier mGWAS Elsevier mQTL Elsevier RIL Elsevier SNP Elsevier TSS Elsevier WGD Elsevier LD Elsevier NAHR Elsevier SNV Elsevier NGS Elsevier CWR Elsevier TCM Elsevier |
topic |
ddc 580 ddc 570 ddc 004 bkl 54.72 Elsevier WGS Elsevier SV Elsevier PAV Elsevier CCD Elsevier CGH Elsevier CNV Elsevier siRNA Elsevier eQTL Elsevier InDels Elsevier RNAseq Elsevier mGWAS Elsevier mQTL Elsevier RIL Elsevier SNP Elsevier TSS Elsevier WGD Elsevier LD Elsevier NAHR Elsevier SNV Elsevier NGS Elsevier CWR Elsevier TCM |
topic_unstemmed |
ddc 580 ddc 570 ddc 004 bkl 54.72 Elsevier WGS Elsevier SV Elsevier PAV Elsevier CCD Elsevier CGH Elsevier CNV Elsevier siRNA Elsevier eQTL Elsevier InDels Elsevier RNAseq Elsevier mGWAS Elsevier mQTL Elsevier RIL Elsevier SNP Elsevier TSS Elsevier WGD Elsevier LD Elsevier NAHR Elsevier SNV Elsevier NGS Elsevier CWR Elsevier TCM |
topic_browse |
ddc 580 ddc 570 ddc 004 bkl 54.72 Elsevier WGS Elsevier SV Elsevier PAV Elsevier CCD Elsevier CGH Elsevier CNV Elsevier siRNA Elsevier eQTL Elsevier InDels Elsevier RNAseq Elsevier mGWAS Elsevier mQTL Elsevier RIL Elsevier SNP Elsevier TSS Elsevier WGD Elsevier LD Elsevier NAHR Elsevier SNV Elsevier NGS Elsevier CWR Elsevier TCM |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y b yb a e l f d aelf aelfd l w lw z n zn t t tt a r f ar arf |
hierarchy_parent_title |
Privacy risk assessment and privacy-preserving data monitoring |
hierarchy_parent_id |
ELV007813538 |
dewey-tens |
580 - Plants (Botany) 570 - Life sciences; biology 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Privacy risk assessment and privacy-preserving data monitoring |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007813538 |
title |
Genomics-based strategies for the use of natural variation in the improvement of crop metabolism |
ctrlnum |
(DE-627)ELV035149906 (ELSEVIER)S0168-9452(15)00166-1 |
title_full |
Genomics-based strategies for the use of natural variation in the improvement of crop metabolism |
author_sort |
Scossa, Federico |
journal |
Privacy risk assessment and privacy-preserving data monitoring |
journalStr |
Privacy risk assessment and privacy-preserving data monitoring |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
47 |
author_browse |
Scossa, Federico |
container_volume |
242 |
physical |
18 |
class |
580 570 580 DE-600 570 DE-600 004 VZ 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Scossa, Federico |
doi_str_mv |
10.1016/j.plantsci.2015.05.021 |
dewey-full |
580 570 004 |
title_sort |
genomics-based strategies for the use of natural variation in the improvement of crop metabolism |
title_auth |
Genomics-based strategies for the use of natural variation in the improvement of crop metabolism |
abstract |
• We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detailed. • The advances afforded by multiple plant genomes are highlighted. |
abstractGer |
• We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detailed. • The advances afforded by multiple plant genomes are highlighted. |
abstract_unstemmed |
• We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detailed. • The advances afforded by multiple plant genomes are highlighted. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Genomics-based strategies for the use of natural variation in the improvement of crop metabolism |
url |
https://doi.org/10.1016/j.plantsci.2015.05.021 |
remote_bool |
true |
author2 |
Brotman, Yariv de Abreu e Lima, Francisco Willmitzer, Lothar Nikoloski, Zoran Tohge, Takayuki Fernie, Alisdair R. |
author2Str |
Brotman, Yariv de Abreu e Lima, Francisco Willmitzer, Lothar Nikoloski, Zoran Tohge, Takayuki Fernie, Alisdair R. |
ppnlink |
ELV007813538 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.plantsci.2015.05.021 |
up_date |
2024-07-06T16:48:33.169Z |
_version_ |
1803849053681745920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV035149906</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624021010.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.plantsci.2015.05.021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016006000002.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV035149906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9452(15)00166-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">580</subfield><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scossa, Federico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genomics-based strategies for the use of natural variation in the improvement of crop metabolism</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• We present an overview of genetic variation that can underlie metabolism in crop species. • We review the use of introgression breeding and detail the wild relatives of our crops which can be used for this purpose. • Information emanating from metabolite quantitative trait loci approaches is detailed. • The advances afforded by multiple plant genomes are highlighted.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">WGS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PAV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CCD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CGH</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CNV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">siRNA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">eQTL</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">InDels</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RNAseq</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mGWAS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mQTL</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RIL</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SNP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TSS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">WGD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NAHR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SNV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NGS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CWR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TCM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brotman, Yariv</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Abreu e Lima, Francisco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Willmitzer, Lothar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nikoloski, Zoran</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tohge, Takayuki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernie, Alisdair R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Silva, Paulo ELSEVIER</subfield><subfield code="t">Privacy risk assessment and privacy-preserving data monitoring</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal of experimental plant biology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007813538</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:242</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:47-64</subfield><subfield code="g">extent:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.plantsci.2015.05.021</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">242</subfield><subfield code="j">2016</subfield><subfield code="h">47-64</subfield><subfield code="g">18</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">580</subfield></datafield></record></collection>
|
score |
7.4010143 |