Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites
To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the...
Ausführliche Beschreibung
Autor*in: |
Fu, Jiyong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
5 |
---|
Übergeordnetes Werk: |
Enthalten in: Transient response and failure of medium density fibreboard panels subjected to air-blast loading - Langdon, G.S. ELSEVIER, 2021, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:380 ; year:2016 ; number:20 ; day:29 ; month:04 ; pages:1788-1792 ; extent:5 |
Links: |
---|
DOI / URN: |
10.1016/j.physleta.2016.03.024 |
---|
Katalog-ID: |
ELV035333464 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV035333464 | ||
003 | DE-627 | ||
005 | 20230625203908.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.physleta.2016.03.024 |2 doi | |
028 | 5 | 2 | |a GBVA2016012000006.pica |
035 | |a (DE-627)ELV035333464 | ||
035 | |a (ELSEVIER)S0375-9601(16)30003-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 51.75 |2 bkl | ||
100 | 1 | |a Fu, Jiyong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites |
264 | 1 | |c 2016transfer abstract | |
300 | |a 5 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. | ||
520 | |a To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. | ||
650 | 7 | |a Magnetoelectric coupling |2 Elsevier | |
650 | 7 | |a Piezoelectric coupling |2 Elsevier | |
700 | 1 | |a Santa Rosa, Washington |4 oth | |
700 | 1 | |a M'Peko, Jean Claude |4 oth | |
700 | 1 | |a Algueró, Miguel |4 oth | |
700 | 1 | |a Venet, Michel |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North-Holland Publ |a Langdon, G.S. ELSEVIER |t Transient response and failure of medium density fibreboard panels subjected to air-blast loading |d 2021 |g Amsterdam |w (DE-627)ELV006407811 |
773 | 1 | 8 | |g volume:380 |g year:2016 |g number:20 |g day:29 |g month:04 |g pages:1788-1792 |g extent:5 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.physleta.2016.03.024 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 51.75 |j Verbundwerkstoffe |j Schichtstoffe |q VZ |
951 | |a AR | ||
952 | |d 380 |j 2016 |e 20 |b 29 |c 0429 |h 1788-1792 |g 5 | ||
953 | |2 045F |a 530 |
author_variant |
j f jf |
---|---|
matchkey_str |
fujiyongsantarosawashingtonmpekojeanclau:2016----:anteeticulnilafepeolcrcik5a5xbyaoadantsrci |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
51.75 |
publishDate |
2016 |
allfields |
10.1016/j.physleta.2016.03.024 doi GBVA2016012000006.pica (DE-627)ELV035333464 (ELSEVIER)S0375-9601(16)30003-2 DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 51.75 bkl Fu, Jiyong verfasserin aut Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites 2016transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. Magnetoelectric coupling Elsevier Piezoelectric coupling Elsevier Santa Rosa, Washington oth M'Peko, Jean Claude oth Algueró, Miguel oth Venet, Michel oth Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:380 year:2016 number:20 day:29 month:04 pages:1788-1792 extent:5 https://doi.org/10.1016/j.physleta.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 380 2016 20 29 0429 1788-1792 5 045F 530 |
spelling |
10.1016/j.physleta.2016.03.024 doi GBVA2016012000006.pica (DE-627)ELV035333464 (ELSEVIER)S0375-9601(16)30003-2 DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 51.75 bkl Fu, Jiyong verfasserin aut Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites 2016transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. Magnetoelectric coupling Elsevier Piezoelectric coupling Elsevier Santa Rosa, Washington oth M'Peko, Jean Claude oth Algueró, Miguel oth Venet, Michel oth Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:380 year:2016 number:20 day:29 month:04 pages:1788-1792 extent:5 https://doi.org/10.1016/j.physleta.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 380 2016 20 29 0429 1788-1792 5 045F 530 |
allfields_unstemmed |
10.1016/j.physleta.2016.03.024 doi GBVA2016012000006.pica (DE-627)ELV035333464 (ELSEVIER)S0375-9601(16)30003-2 DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 51.75 bkl Fu, Jiyong verfasserin aut Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites 2016transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. Magnetoelectric coupling Elsevier Piezoelectric coupling Elsevier Santa Rosa, Washington oth M'Peko, Jean Claude oth Algueró, Miguel oth Venet, Michel oth Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:380 year:2016 number:20 day:29 month:04 pages:1788-1792 extent:5 https://doi.org/10.1016/j.physleta.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 380 2016 20 29 0429 1788-1792 5 045F 530 |
allfieldsGer |
10.1016/j.physleta.2016.03.024 doi GBVA2016012000006.pica (DE-627)ELV035333464 (ELSEVIER)S0375-9601(16)30003-2 DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 51.75 bkl Fu, Jiyong verfasserin aut Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites 2016transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. Magnetoelectric coupling Elsevier Piezoelectric coupling Elsevier Santa Rosa, Washington oth M'Peko, Jean Claude oth Algueró, Miguel oth Venet, Michel oth Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:380 year:2016 number:20 day:29 month:04 pages:1788-1792 extent:5 https://doi.org/10.1016/j.physleta.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 380 2016 20 29 0429 1788-1792 5 045F 530 |
allfieldsSound |
10.1016/j.physleta.2016.03.024 doi GBVA2016012000006.pica (DE-627)ELV035333464 (ELSEVIER)S0375-9601(16)30003-2 DE-627 ger DE-627 rakwb eng 530 530 DE-600 670 VZ 51.75 bkl Fu, Jiyong verfasserin aut Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites 2016transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. Magnetoelectric coupling Elsevier Piezoelectric coupling Elsevier Santa Rosa, Washington oth M'Peko, Jean Claude oth Algueró, Miguel oth Venet, Michel oth Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:380 year:2016 number:20 day:29 month:04 pages:1788-1792 extent:5 https://doi.org/10.1016/j.physleta.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 380 2016 20 29 0429 1788-1792 5 045F 530 |
language |
English |
source |
Enthalten in Transient response and failure of medium density fibreboard panels subjected to air-blast loading Amsterdam volume:380 year:2016 number:20 day:29 month:04 pages:1788-1792 extent:5 |
sourceStr |
Enthalten in Transient response and failure of medium density fibreboard panels subjected to air-blast loading Amsterdam volume:380 year:2016 number:20 day:29 month:04 pages:1788-1792 extent:5 |
format_phy_str_mv |
Article |
bklname |
Verbundwerkstoffe Schichtstoffe |
institution |
findex.gbv.de |
topic_facet |
Magnetoelectric coupling Piezoelectric coupling |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
authorswithroles_txt_mv |
Fu, Jiyong @@aut@@ Santa Rosa, Washington @@oth@@ M'Peko, Jean Claude @@oth@@ Algueró, Miguel @@oth@@ Venet, Michel @@oth@@ |
publishDateDaySort_date |
2016-01-29T00:00:00Z |
hierarchy_top_id |
ELV006407811 |
dewey-sort |
3530 |
id |
ELV035333464 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV035333464</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625203908.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physleta.2016.03.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016012000006.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV035333464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0375-9601(16)30003-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Jiyong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Magnetoelectric coupling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Piezoelectric coupling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santa Rosa, Washington</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">M'Peko, Jean Claude</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Algueró, Miguel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Venet, Michel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ</subfield><subfield code="a">Langdon, G.S. ELSEVIER</subfield><subfield code="t">Transient response and failure of medium density fibreboard panels subjected to air-blast loading</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006407811</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:380</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:20</subfield><subfield code="g">day:29</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1788-1792</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.physleta.2016.03.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.75</subfield><subfield code="j">Verbundwerkstoffe</subfield><subfield code="j">Schichtstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">380</subfield><subfield code="j">2016</subfield><subfield code="e">20</subfield><subfield code="b">29</subfield><subfield code="c">0429</subfield><subfield code="h">1788-1792</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Fu, Jiyong |
spellingShingle |
Fu, Jiyong ddc 530 ddc 670 bkl 51.75 Elsevier Magnetoelectric coupling Elsevier Piezoelectric coupling Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites |
authorStr |
Fu, Jiyong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006407811 |
format |
electronic Article |
dewey-ones |
530 - Physics 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 670 VZ 51.75 bkl Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites Magnetoelectric coupling Elsevier Piezoelectric coupling Elsevier |
topic |
ddc 530 ddc 670 bkl 51.75 Elsevier Magnetoelectric coupling Elsevier Piezoelectric coupling |
topic_unstemmed |
ddc 530 ddc 670 bkl 51.75 Elsevier Magnetoelectric coupling Elsevier Piezoelectric coupling |
topic_browse |
ddc 530 ddc 670 bkl 51.75 Elsevier Magnetoelectric coupling Elsevier Piezoelectric coupling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
r w s rw rws j c m jc jcm m a ma m v mv |
hierarchy_parent_title |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
hierarchy_parent_id |
ELV006407811 |
dewey-tens |
530 - Physics 670 - Manufacturing |
hierarchy_top_title |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006407811 |
title |
Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites |
ctrlnum |
(DE-627)ELV035333464 (ELSEVIER)S0375-9601(16)30003-2 |
title_full |
Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites |
author_sort |
Fu, Jiyong |
journal |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
journalStr |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
1788 |
author_browse |
Fu, Jiyong |
container_volume |
380 |
physical |
5 |
class |
530 530 DE-600 670 VZ 51.75 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Fu, Jiyong |
doi_str_mv |
10.1016/j.physleta.2016.03.024 |
dewey-full |
530 670 |
title_sort |
magnetoelectric coupling in lead-free piezoelectric li x (k0.5na0.5)1− x nb1− y ta y o3 and magnetostrictive cofe2o4 laminated composites |
title_auth |
Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites |
abstract |
To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. |
abstractGer |
To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. |
abstract_unstemmed |
To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
20 |
title_short |
Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites |
url |
https://doi.org/10.1016/j.physleta.2016.03.024 |
remote_bool |
true |
author2 |
Santa Rosa, Washington M'Peko, Jean Claude Algueró, Miguel Venet, Michel |
author2Str |
Santa Rosa, Washington M'Peko, Jean Claude Algueró, Miguel Venet, Michel |
ppnlink |
ELV006407811 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.physleta.2016.03.024 |
up_date |
2024-07-06T17:17:31.094Z |
_version_ |
1803850876028190720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV035333464</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625203908.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physleta.2016.03.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016012000006.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV035333464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0375-9601(16)30003-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Jiyong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetoelectric coupling in lead-free piezoelectric Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 and magnetostrictive CoFe2O4 laminated composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Li x (K0.5Na0.5)1− x Nb1− y Ta y O3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d 31 , a crucial ingredient determining ME couplings, for several Li ( x = 0.03 , 0.035 , 0.04 ) and Ta ( y = 0.15 , 0.2 , 0.25 ) concentrations, and find that the highest d 31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse ( α E , 31 ) and the longitudinal ( α E , 33 ) low-frequency ME coupling coefficients of our composites, for each the above composition of ( x , y ). At x = 0.03 , we find the usual scenario of α E , 31 and α E , 33 , i.e., the strongest ME coupling occurs when d 31 is maximal, namely at y = 0.2 . On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d 31 , e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04 , following from the interplay of d 31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with α E , 31 in magnitude around twice of α E , 33 , are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Magnetoelectric coupling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Piezoelectric coupling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santa Rosa, Washington</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">M'Peko, Jean Claude</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Algueró, Miguel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Venet, Michel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ</subfield><subfield code="a">Langdon, G.S. ELSEVIER</subfield><subfield code="t">Transient response and failure of medium density fibreboard panels subjected to air-blast loading</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006407811</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:380</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:20</subfield><subfield code="g">day:29</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1788-1792</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.physleta.2016.03.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.75</subfield><subfield code="j">Verbundwerkstoffe</subfield><subfield code="j">Schichtstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">380</subfield><subfield code="j">2016</subfield><subfield code="e">20</subfield><subfield code="b">29</subfield><subfield code="c">0429</subfield><subfield code="h">1788-1792</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.4010105 |