Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs
We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths...
Ausführliche Beschreibung
Autor*in: |
Wei-Kleiner, Fang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
22 |
---|
Übergeordnetes Werk: |
Enthalten in: 1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER - 2011, JCSS, San Diego, Calif. [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:82 ; year:2016 ; number:1 ; pages:23-44 ; extent:22 |
Links: |
---|
DOI / URN: |
10.1016/j.jcss.2015.06.008 |
---|
Katalog-ID: |
ELV035599251 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV035599251 | ||
003 | DE-627 | ||
005 | 20230625204906.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcss.2015.06.008 |2 doi | |
028 | 5 | 2 | |a GBVA2016022000007.pica |
035 | |a (DE-627)ELV035599251 | ||
035 | |a (ELSEVIER)S0022-0000(15)00070-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 570 |a 540 |q VZ |
100 | 1 | |a Wei-Kleiner, Fang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs |
264 | 1 | |c 2016transfer abstract | |
300 | |a 22 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. | ||
520 | |a We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. | ||
650 | 7 | |a Graph indexing |2 Elsevier | |
650 | 7 | |a k Nearest Neighbors problems |2 Elsevier | |
650 | 7 | |a Shortest path |2 Elsevier | |
650 | 7 | |a Tree decomposition |2 Elsevier | |
650 | 7 | |a Graphs algorithms |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |t 1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER |d 2011 |d JCSS |g San Diego, Calif. [u.a.] |w (DE-627)ELV010661603 |
773 | 1 | 8 | |g volume:82 |g year:2016 |g number:1 |g pages:23-44 |g extent:22 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jcss.2015.06.008 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_127 | ||
912 | |a GBV_ILN_227 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2094 | ||
951 | |a AR | ||
952 | |d 82 |j 2016 |e 1 |h 23-44 |g 22 | ||
953 | |2 045F |a 004 |
author_variant |
f w k fwk |
---|---|
matchkey_str |
weikleinerfang:2016----:reeopstobsdneigoefcethretahnnaeteg |
hierarchy_sort_str |
2016transfer abstract |
publishDate |
2016 |
allfields |
10.1016/j.jcss.2015.06.008 doi GBVA2016022000007.pica (DE-627)ELV035599251 (ELSEVIER)S0022-0000(15)00070-7 DE-627 ger DE-627 rakwb eng 004 004 DE-600 610 VZ 570 540 VZ Wei-Kleiner, Fang verfasserin aut Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs 2016transfer abstract 22 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. Graph indexing Elsevier k Nearest Neighbors problems Elsevier Shortest path Elsevier Tree decomposition Elsevier Graphs algorithms Elsevier Enthalten in Elsevier 1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER 2011 JCSS San Diego, Calif. [u.a.] (DE-627)ELV010661603 volume:82 year:2016 number:1 pages:23-44 extent:22 https://doi.org/10.1016/j.jcss.2015.06.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_39 GBV_ILN_62 GBV_ILN_90 GBV_ILN_120 GBV_ILN_127 GBV_ILN_227 GBV_ILN_2001 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2094 AR 82 2016 1 23-44 22 045F 004 |
spelling |
10.1016/j.jcss.2015.06.008 doi GBVA2016022000007.pica (DE-627)ELV035599251 (ELSEVIER)S0022-0000(15)00070-7 DE-627 ger DE-627 rakwb eng 004 004 DE-600 610 VZ 570 540 VZ Wei-Kleiner, Fang verfasserin aut Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs 2016transfer abstract 22 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. Graph indexing Elsevier k Nearest Neighbors problems Elsevier Shortest path Elsevier Tree decomposition Elsevier Graphs algorithms Elsevier Enthalten in Elsevier 1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER 2011 JCSS San Diego, Calif. [u.a.] (DE-627)ELV010661603 volume:82 year:2016 number:1 pages:23-44 extent:22 https://doi.org/10.1016/j.jcss.2015.06.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_39 GBV_ILN_62 GBV_ILN_90 GBV_ILN_120 GBV_ILN_127 GBV_ILN_227 GBV_ILN_2001 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2094 AR 82 2016 1 23-44 22 045F 004 |
allfields_unstemmed |
10.1016/j.jcss.2015.06.008 doi GBVA2016022000007.pica (DE-627)ELV035599251 (ELSEVIER)S0022-0000(15)00070-7 DE-627 ger DE-627 rakwb eng 004 004 DE-600 610 VZ 570 540 VZ Wei-Kleiner, Fang verfasserin aut Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs 2016transfer abstract 22 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. Graph indexing Elsevier k Nearest Neighbors problems Elsevier Shortest path Elsevier Tree decomposition Elsevier Graphs algorithms Elsevier Enthalten in Elsevier 1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER 2011 JCSS San Diego, Calif. [u.a.] (DE-627)ELV010661603 volume:82 year:2016 number:1 pages:23-44 extent:22 https://doi.org/10.1016/j.jcss.2015.06.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_39 GBV_ILN_62 GBV_ILN_90 GBV_ILN_120 GBV_ILN_127 GBV_ILN_227 GBV_ILN_2001 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2094 AR 82 2016 1 23-44 22 045F 004 |
allfieldsGer |
10.1016/j.jcss.2015.06.008 doi GBVA2016022000007.pica (DE-627)ELV035599251 (ELSEVIER)S0022-0000(15)00070-7 DE-627 ger DE-627 rakwb eng 004 004 DE-600 610 VZ 570 540 VZ Wei-Kleiner, Fang verfasserin aut Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs 2016transfer abstract 22 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. Graph indexing Elsevier k Nearest Neighbors problems Elsevier Shortest path Elsevier Tree decomposition Elsevier Graphs algorithms Elsevier Enthalten in Elsevier 1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER 2011 JCSS San Diego, Calif. [u.a.] (DE-627)ELV010661603 volume:82 year:2016 number:1 pages:23-44 extent:22 https://doi.org/10.1016/j.jcss.2015.06.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_39 GBV_ILN_62 GBV_ILN_90 GBV_ILN_120 GBV_ILN_127 GBV_ILN_227 GBV_ILN_2001 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2094 AR 82 2016 1 23-44 22 045F 004 |
allfieldsSound |
10.1016/j.jcss.2015.06.008 doi GBVA2016022000007.pica (DE-627)ELV035599251 (ELSEVIER)S0022-0000(15)00070-7 DE-627 ger DE-627 rakwb eng 004 004 DE-600 610 VZ 570 540 VZ Wei-Kleiner, Fang verfasserin aut Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs 2016transfer abstract 22 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. Graph indexing Elsevier k Nearest Neighbors problems Elsevier Shortest path Elsevier Tree decomposition Elsevier Graphs algorithms Elsevier Enthalten in Elsevier 1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER 2011 JCSS San Diego, Calif. [u.a.] (DE-627)ELV010661603 volume:82 year:2016 number:1 pages:23-44 extent:22 https://doi.org/10.1016/j.jcss.2015.06.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_39 GBV_ILN_62 GBV_ILN_90 GBV_ILN_120 GBV_ILN_127 GBV_ILN_227 GBV_ILN_2001 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2094 AR 82 2016 1 23-44 22 045F 004 |
language |
English |
source |
Enthalten in 1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER San Diego, Calif. [u.a.] volume:82 year:2016 number:1 pages:23-44 extent:22 |
sourceStr |
Enthalten in 1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER San Diego, Calif. [u.a.] volume:82 year:2016 number:1 pages:23-44 extent:22 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Graph indexing k Nearest Neighbors problems Shortest path Tree decomposition Graphs algorithms |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER |
authorswithroles_txt_mv |
Wei-Kleiner, Fang @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV010661603 |
dewey-sort |
14 |
id |
ELV035599251 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV035599251</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625204906.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcss.2015.06.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016022000007.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV035599251</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-0000(15)00070-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei-Kleiner, Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graph indexing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">k Nearest Neighbors problems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shortest path</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tree decomposition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphs algorithms</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER</subfield><subfield code="d">2011</subfield><subfield code="d">JCSS</subfield><subfield code="g">San Diego, Calif. [u.a.]</subfield><subfield code="w">(DE-627)ELV010661603</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:23-44</subfield><subfield code="g">extent:22</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcss.2015.06.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_127</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2094</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">23-44</subfield><subfield code="g">22</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Wei-Kleiner, Fang |
spellingShingle |
Wei-Kleiner, Fang ddc 004 ddc 610 ddc 570 Elsevier Graph indexing Elsevier k Nearest Neighbors problems Elsevier Shortest path Elsevier Tree decomposition Elsevier Graphs algorithms Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs |
authorStr |
Wei-Kleiner, Fang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV010661603 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 610 - Medicine & health 570 - Life sciences; biology 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 610 VZ 570 540 VZ Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs Graph indexing Elsevier k Nearest Neighbors problems Elsevier Shortest path Elsevier Tree decomposition Elsevier Graphs algorithms Elsevier |
topic |
ddc 004 ddc 610 ddc 570 Elsevier Graph indexing Elsevier k Nearest Neighbors problems Elsevier Shortest path Elsevier Tree decomposition Elsevier Graphs algorithms |
topic_unstemmed |
ddc 004 ddc 610 ddc 570 Elsevier Graph indexing Elsevier k Nearest Neighbors problems Elsevier Shortest path Elsevier Tree decomposition Elsevier Graphs algorithms |
topic_browse |
ddc 004 ddc 610 ddc 570 Elsevier Graph indexing Elsevier k Nearest Neighbors problems Elsevier Shortest path Elsevier Tree decomposition Elsevier Graphs algorithms |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER |
hierarchy_parent_id |
ELV010661603 |
dewey-tens |
000 - Computer science, knowledge & systems 610 - Medicine & health 570 - Life sciences; biology 540 - Chemistry |
hierarchy_top_title |
1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV010661603 |
title |
Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs |
ctrlnum |
(DE-627)ELV035599251 (ELSEVIER)S0022-0000(15)00070-7 |
title_full |
Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs |
author_sort |
Wei-Kleiner, Fang |
journal |
1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER |
journalStr |
1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
23 |
author_browse |
Wei-Kleiner, Fang |
container_volume |
82 |
physical |
22 |
class |
004 004 DE-600 610 VZ 570 540 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Wei-Kleiner, Fang |
doi_str_mv |
10.1016/j.jcss.2015.06.008 |
dewey-full |
004 610 570 540 |
title_sort |
tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs |
title_auth |
Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs |
abstract |
We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. |
abstractGer |
We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. |
abstract_unstemmed |
We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_39 GBV_ILN_62 GBV_ILN_90 GBV_ILN_120 GBV_ILN_127 GBV_ILN_227 GBV_ILN_2001 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2094 |
container_issue |
1 |
title_short |
Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs |
url |
https://doi.org/10.1016/j.jcss.2015.06.008 |
remote_bool |
true |
ppnlink |
ELV010661603 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jcss.2015.06.008 |
up_date |
2024-07-06T17:58:56.818Z |
_version_ |
1803853482498719744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV035599251</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625204906.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcss.2015.06.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016022000007.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV035599251</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-0000(15)00070-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei-Kleiner, Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graph indexing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">k Nearest Neighbors problems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shortest path</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tree decomposition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphs algorithms</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">1190 poster EVALUATION OF DEFORMABLE IMAGE CO-REGISTRATION IN ADAPTIVE IMRT FOR HEAD AND NECK CANCER</subfield><subfield code="d">2011</subfield><subfield code="d">JCSS</subfield><subfield code="g">San Diego, Calif. [u.a.]</subfield><subfield code="w">(DE-627)ELV010661603</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:23-44</subfield><subfield code="g">extent:22</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcss.2015.06.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_127</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2094</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">23-44</subfield><subfield code="g">22</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.401991 |