Is it possible to determine a point lying in a simplex if we know the distances from the vertices?
It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivate...
Ausführliche Beschreibung
Autor*in: |
Gehér, György Pál [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
13 |
---|
Übergeordnetes Werk: |
Enthalten in: In silico drug repurposing in COVID-19: A network-based analysis - Sibilio, Pasquale ELSEVIER, 2021, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:439 ; year:2016 ; number:2 ; day:15 ; month:07 ; pages:651-663 ; extent:13 |
Links: |
---|
DOI / URN: |
10.1016/j.jmaa.2016.03.024 |
---|
Katalog-ID: |
ELV035608072 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV035608072 | ||
003 | DE-627 | ||
005 | 20230625204926.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmaa.2016.03.024 |2 doi | |
028 | 5 | 2 | |a GBVA2016022000019.pica |
035 | |a (DE-627)ELV035608072 | ||
035 | |a (ELSEVIER)S0022-247X(16)00242-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Gehér, György Pál |e verfasserin |4 aut | |
245 | 1 | 0 | |a Is it possible to determine a point lying in a simplex if we know the distances from the vertices? |
264 | 1 | |c 2016transfer abstract | |
300 | |a 13 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. | ||
520 | |a It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. | ||
650 | 7 | |a Resolving set |2 Elsevier | |
650 | 7 | |a Simplex |2 Elsevier | |
650 | 7 | |a Bisector |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Sibilio, Pasquale ELSEVIER |t In silico drug repurposing in COVID-19: A network-based analysis |d 2021 |g Amsterdam [u.a.] |w (DE-627)ELV006634001 |
773 | 1 | 8 | |g volume:439 |g year:2016 |g number:2 |g day:15 |g month:07 |g pages:651-663 |g extent:13 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmaa.2016.03.024 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 439 |j 2016 |e 2 |b 15 |c 0715 |h 651-663 |g 13 | ||
953 | |2 045F |a 510 |
author_variant |
g p g gp gpg |
---|---|
matchkey_str |
gehrgyrgypl:2016----:stosbeoeemnaonlignsmlxfenwhd |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
44.40 |
publishDate |
2016 |
allfields |
10.1016/j.jmaa.2016.03.024 doi GBVA2016022000019.pica (DE-627)ELV035608072 (ELSEVIER)S0022-247X(16)00242-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Gehér, György Pál verfasserin aut Is it possible to determine a point lying in a simplex if we know the distances from the vertices? 2016transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. Resolving set Elsevier Simplex Elsevier Bisector Elsevier Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:439 year:2016 number:2 day:15 month:07 pages:651-663 extent:13 https://doi.org/10.1016/j.jmaa.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 439 2016 2 15 0715 651-663 13 045F 510 |
spelling |
10.1016/j.jmaa.2016.03.024 doi GBVA2016022000019.pica (DE-627)ELV035608072 (ELSEVIER)S0022-247X(16)00242-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Gehér, György Pál verfasserin aut Is it possible to determine a point lying in a simplex if we know the distances from the vertices? 2016transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. Resolving set Elsevier Simplex Elsevier Bisector Elsevier Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:439 year:2016 number:2 day:15 month:07 pages:651-663 extent:13 https://doi.org/10.1016/j.jmaa.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 439 2016 2 15 0715 651-663 13 045F 510 |
allfields_unstemmed |
10.1016/j.jmaa.2016.03.024 doi GBVA2016022000019.pica (DE-627)ELV035608072 (ELSEVIER)S0022-247X(16)00242-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Gehér, György Pál verfasserin aut Is it possible to determine a point lying in a simplex if we know the distances from the vertices? 2016transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. Resolving set Elsevier Simplex Elsevier Bisector Elsevier Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:439 year:2016 number:2 day:15 month:07 pages:651-663 extent:13 https://doi.org/10.1016/j.jmaa.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 439 2016 2 15 0715 651-663 13 045F 510 |
allfieldsGer |
10.1016/j.jmaa.2016.03.024 doi GBVA2016022000019.pica (DE-627)ELV035608072 (ELSEVIER)S0022-247X(16)00242-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Gehér, György Pál verfasserin aut Is it possible to determine a point lying in a simplex if we know the distances from the vertices? 2016transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. Resolving set Elsevier Simplex Elsevier Bisector Elsevier Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:439 year:2016 number:2 day:15 month:07 pages:651-663 extent:13 https://doi.org/10.1016/j.jmaa.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 439 2016 2 15 0715 651-663 13 045F 510 |
allfieldsSound |
10.1016/j.jmaa.2016.03.024 doi GBVA2016022000019.pica (DE-627)ELV035608072 (ELSEVIER)S0022-247X(16)00242-0 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Gehér, György Pál verfasserin aut Is it possible to determine a point lying in a simplex if we know the distances from the vertices? 2016transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. Resolving set Elsevier Simplex Elsevier Bisector Elsevier Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:439 year:2016 number:2 day:15 month:07 pages:651-663 extent:13 https://doi.org/10.1016/j.jmaa.2016.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 439 2016 2 15 0715 651-663 13 045F 510 |
language |
English |
source |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:439 year:2016 number:2 day:15 month:07 pages:651-663 extent:13 |
sourceStr |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:439 year:2016 number:2 day:15 month:07 pages:651-663 extent:13 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Resolving set Simplex Bisector |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
In silico drug repurposing in COVID-19: A network-based analysis |
authorswithroles_txt_mv |
Gehér, György Pál @@aut@@ |
publishDateDaySort_date |
2016-01-15T00:00:00Z |
hierarchy_top_id |
ELV006634001 |
dewey-sort |
3510 |
id |
ELV035608072 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV035608072</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625204926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2016.03.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016022000019.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV035608072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(16)00242-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gehér, György Pál</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Is it possible to determine a point lying in a simplex if we know the distances from the vertices?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Resolving set</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Simplex</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bisector</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:439</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:651-663</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2016.03.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">439</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0715</subfield><subfield code="h">651-663</subfield><subfield code="g">13</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Gehér, György Pál |
spellingShingle |
Gehér, György Pál ddc 510 ddc 610 bkl 44.40 Elsevier Resolving set Elsevier Simplex Elsevier Bisector Is it possible to determine a point lying in a simplex if we know the distances from the vertices? |
authorStr |
Gehér, György Pál |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006634001 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 610 VZ 44.40 bkl Is it possible to determine a point lying in a simplex if we know the distances from the vertices? Resolving set Elsevier Simplex Elsevier Bisector Elsevier |
topic |
ddc 510 ddc 610 bkl 44.40 Elsevier Resolving set Elsevier Simplex Elsevier Bisector |
topic_unstemmed |
ddc 510 ddc 610 bkl 44.40 Elsevier Resolving set Elsevier Simplex Elsevier Bisector |
topic_browse |
ddc 510 ddc 610 bkl 44.40 Elsevier Resolving set Elsevier Simplex Elsevier Bisector |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
In silico drug repurposing in COVID-19: A network-based analysis |
hierarchy_parent_id |
ELV006634001 |
dewey-tens |
510 - Mathematics 610 - Medicine & health |
hierarchy_top_title |
In silico drug repurposing in COVID-19: A network-based analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006634001 |
title |
Is it possible to determine a point lying in a simplex if we know the distances from the vertices? |
ctrlnum |
(DE-627)ELV035608072 (ELSEVIER)S0022-247X(16)00242-0 |
title_full |
Is it possible to determine a point lying in a simplex if we know the distances from the vertices? |
author_sort |
Gehér, György Pál |
journal |
In silico drug repurposing in COVID-19: A network-based analysis |
journalStr |
In silico drug repurposing in COVID-19: A network-based analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
651 |
author_browse |
Gehér, György Pál |
container_volume |
439 |
physical |
13 |
class |
510 510 DE-600 610 VZ 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gehér, György Pál |
doi_str_mv |
10.1016/j.jmaa.2016.03.024 |
dewey-full |
510 610 |
title_sort |
is it possible to determine a point lying in a simplex if we know the distances from the vertices? |
title_auth |
Is it possible to determine a point lying in a simplex if we know the distances from the vertices? |
abstract |
It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. |
abstractGer |
It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. |
abstract_unstemmed |
It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA |
container_issue |
2 |
title_short |
Is it possible to determine a point lying in a simplex if we know the distances from the vertices? |
url |
https://doi.org/10.1016/j.jmaa.2016.03.024 |
remote_bool |
true |
ppnlink |
ELV006634001 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmaa.2016.03.024 |
up_date |
2024-07-06T18:00:20.981Z |
_version_ |
1803853570751070208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV035608072</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625204926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2016.03.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016022000019.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV035608072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(16)00242-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gehér, György Pál</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Is it possible to determine a point lying in a simplex if we know the distances from the vertices?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points { p 0 , … , p d } in R d , then the Euclidean distances { | x − p j | } j = 0 d determine the point x in R d uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces ( X , ‖ ⋅ ‖ ) for which every set of d + 1 affine independent points { p 0 , … , p d } ⊂ X , the distances { ‖ x − p j ‖ } j = 0 d determine the point x lying in the simplex Conv ( { p 0 , … , p d } ) uniquely. If d = 2 , then this condition is equivalent to strict convexity, but if d > 2 , then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these () is re-proven using the fundamental theorem of projective geometry.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Resolving set</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Simplex</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bisector</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:439</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:651-663</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2016.03.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">439</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0715</subfield><subfield code="h">651-663</subfield><subfield code="g">13</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.4011936 |